
Fosdem, February 2021

Network
Performance in
the Linux Kernel
Maxime Chevallier
maxime.chevallier@bootlin.com

© Copyright 2004-2021, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

 



Maxime Chevallier

I Linux kernel engineer at Bootlin.
I Linux kernel and driver development, system integration, boot

time optimization, consulting. . .
I Embedded Linux, Linux driver development, Yocto Project &

OpenEmbedded and Buildroot training, with materials freely
available under a Creative Commons license.

I https://bootlin.com
I Contributions:

I Worked on network (MAC, PHY, switch) engines.
I Contributed to the Marvell EBU SoCs upstream support.
I Worked on Rockchip’s Camera interface and Techwell’s

TW9900 decoder.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

 

https://bootlin.com


Preamble - goals

I Follow the path of packets through the Hardware and
Software stack

I Understand the features of modern NICs
I Discover what the Linux Kernel implements to gain

performances
I Go through the various offloadings available

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

 



Fosdem, February 2021

The path of a
packet
Maxime Chevallier
maxime.chevallier@bootlin.com

© Copyright 2004-2021, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

 



The Hardware

Link 
Partner

CPU

MAC

RAM

PHY

I Link Partner : The other side of the cable
I Connector : 8P8C (RJ45), SFP, etc.
I Media : Copper, Fiber, Radio
I PHY : Converts media-dependent signals into standard data

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

 



The NIC

I Network Interface Controller
I Sometimes embed a PHY (PCIe networking card)
I The MAC : Handles L2 protocol, transfers data to the CPU

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

 



Frame reception

011011001 1101 Buffer

MAC RAM

Receive queue

CPU

I The MAC received data and writes it to RAM using DMA
I A descriptor is created
I It’s address is put in a queue

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

 



Frame reception - IRQ

Buffer

MAC RAM

CPU

IRQ

I An interrupt is fired
I One CPU core will handle the interrupt

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

 



Frame reception - Unqueue

011011001

1101

Buffer

MAC RAM

CPU

Buffer

0111010011101001110101

I The Interrupt handler acknowledges the interrupt
I The packet is processed in softirq context
I The next frame can be received in parallel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

 



In the NIC driver

I The CPU : Processes L3 (packets) and above, up to the
application

I The Interrupt Handler does very basic work, and masks
interrupts

I NAPI is used to schedule the processing in batches
I Subsequent frames are also dequeued
I NAPI stops dequeueing once :

I The budget is expired (release the CPU to the scheduler)
I The queue is empty

I NAPI re-enables interrupts
I This avoids having one interrupt per frame

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

 



In the kernel networking stack

I The PCAP hook is called, then the TC hook
I The header in unpacked, to decide if :

I The packet is forwarded
I The packet is dropped
I The packed is passed to a socket

I The in-kernel data path is heavily optimized...
I ...But still requires some processing power at very high speeds

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

 



Fosdem, February 2021

Traffic Spreading
and Steering
Maxime Chevallier
maxime.chevallier@bootlin.com

© Copyright 2004-2021, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

 



Scaling across queues and CPUs

I Most modern systems have
multi-core CPUs

I Modern NICs have multiple
RX/TX queues (rxq/txq)

I Interrupted CPU does all the
packet processing
I If the interrupt always

goes to the same core...
I ...the other ones will stay

unused

Core 0 Core 1

Core 2 Core 3

MAC

Hardware and Software techniques exists to scale processing across CPUs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

 



Scaling

Goal : Spread packet across CPU cores

I We can’t randomly assign packets to CPUs
I Ordering must be preserved
I Memory domains should be taken into account (L1/L2

caches, NUMA nodes)
I We need to spread packets per-flow

Kernel documentation : Documentation/networking/scaling.rst

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

 



N-tuple Flows

Flow : Packets from the same emitter, for the same consumer
I Flows are identified by data extracted from the headers
I L3 flow : Source and Destination IP addresses → 2-tuple
I L4 flow : src/dst IP + Proto + src/dst ports → 5-tuple

MAC SA MAC DA

ethtypevlan

ver ToS len id

checksum

SRC port DST port

len, chksum, etc.

IP DA

Payload

Proto

IP SA

L2

L3

L4

2-tuple

MAC SA MAC DA

ethtypevlan

ver ToS len id

checksum

len, chksum, etc.

IP DA

DST portSRC port

Payload

Proto

IP SA

L2

L3

L4

5-tuple
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

 



N-tuple Flows

I Other flows can be interesting :
I Vlan-based flows
I Destination MAC-based flows

I Most often, these tuples are hashed prior to being used
I Allows to build smaller flow tables
I Advanced NICs are able to keep track of a high number of

flows

MAC SA MAC DA

ethtypevlan

ver ToS len id

checksum

len, chksum, etc.

IP DA

DST portSRC port

Payload

Proto

IP SA

L2

L3

L4

proto IP SA ...

Hash(key) % N

key =

= cpu_id

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

 



RPS : Receive Packet Steering

Core 0 Core 1

Core 2 Core 3

MAC

I The interrupted CPU schedules processing on other CPUs
I Key data is extracted from the Headers and hashed

I The Hash can be computed by the hardware
I It is then passed in the descriptor

I The CPU is chosen by masking out the first bits of the hash
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

 



Using RPS

I Kernel needs to be built with CONFIG_RPS
I The set of CPUs used depends on the rxq the frame arrives on
I echo 0x03 > /sys/class/net/eth0/queues/rx-0/rps_cpus
I echo 0x0c > /sys/class/net/eth0/queues/rx-1/rps_cpus

I → Traffic from rxq 0 is spread on CPUs 0 and 1
I → Traffic from rxq 1 is spread on CPUs 2 and 3

I Very useful for NICs with fewer rxqs than CPU cores !

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

 



RSS : Receive Side Scaling

Core 0 Core 1

Core 2 Core 3

MAC

rxq0 rxq1 rxq2

I Offloaded version of RPS
I The NIC is configured to extract the header data and

compute the Hash
I The CPU is chosen by means of an Indirection Table
I The NIC actually enqueues the packet into one of its queues
I The interrupt directly comes to the correct CPU !

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

 



RSS Tables

I Tables within the NIC
I Associates hashes to queues
I Tables commonly have more entries than queues

I e.g. 128 entries for 4 queues
I Filling the table allows affecting weights to each queue

0x00: 0 0 0 0 0 0 0 0
0x08: 0 0 0 0 0 0 0 0
0x10: 1 1 1 1 1 1 1 1
0x18: 2 2 2 2 3 3 3 3

I rxq 0 has weight 4
I rxq 1 has weight 2
I rxq 2 and 3 have weight 1

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

 



Using RSS

I RSS is configured through ethtool
I Enabling RSS : ethtool -K eth0 rx-hashing on
I Configuring the indirection table :

ethtool -X eth0 weight 1 2 2 1
I Dumping the indirection table : ethtool -x eth0
I Configuring the hashed fields :

ethtool -N eth0 rx-flow-hash tcp4 sdfn
I see man ethtool(8) for the meaning of each flow type

ethtool -X eth0 equal 4
ethtool -N eth0 rx-flow-hash tcp4 sdfn
ethtool -N eth0 rx-flow-hash udp4 sdfn
ethtool -K eth0 rx-hashing on
→ Increased IP forwarding speed by a factor of 3 on the MacchiatoBin

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

 



RFS : Receive Flow Steering

I RPS and RSS don’t care about who consumes which flow
I This might be bad for cache locality

I What if RPS/RSS sends a flow to CPU 1...
I ...but the consumer process lives on CPU 2 ?

I RFS tracks the flows and their consumers
I Internally keeps a table associating flows to consumers/CPUs
I Updates indirection for a flow when the consumer migrates

1. httpd lives on CPU 0

2. RFS steers TCP traffic to port 80 onto CPU 0

3. httpd is migrated to CPU 1

4. RFS updates the flow table

5. TCP to port 80 traffic now goes to CPU 1 !

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

 



Using RFS

I Internally, a flow table associates flow hashes to CPUs
I User indicates the size of the table
I echo 32768 > /proc/sys/net/core/rps_sock_flow_entries

I echo 4096 > /sys/class/net/eth0/queues/rx-0/rps_flow_cnt

I echo 4096 > /sys/class/net/eth0/queues/rx-1/rps_flow_cnt

I ...

I We configure (32768/N(rxqs)) in each queue
I These values are recommended in the Kernel Documentation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

 



aRFS : Accelerated Receive Flow Steering

I Advanced NICs can steer packets to rxqs in Hardware
I aRFS asks the driver to configure steering rules for each flow
I Rules are updated upon migration of the consumer

I Packets always come to the right CPU !
I Kernel handles outstanding packets upon migration

I Needs support in HW, and a specific implementation in the
driver

I The driver determines how to build the steering rule (n-tuple)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

 



Using aRFS

I Kernel needs to be built with CONFIG_RFS_ACCEL
I Enable N-tuple filtering offloading :

ethtool -K eth0 ntuple on
I The NIC and the driver needs to support aRFS

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

 



Flow Steering : Ethtool and TC flower

I Manually steering flows can be interesting for proper resource
assignment

I This is also helpful to dedicate queues to flows, e.g. AF_XDP
I Two interfaces exists : tc flower and ethtool

I Internally, both ethtool and tc interfaces are being merged...
I ... But for now the 2 methods coexist and can conflict

I We insert steering rules in the NIC, with priorities
I Rules associate :

I Flow types : TCP4, UDP6, IP4, ether, etc.
I Filters : src-ip, proto, vlan, dst-port, etc.
I Actions : Target rxq, drop, RSS context
I Location : Priority of the rule

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

 



Using tc flower and ethtool rxnfc

ethtool examples
I ethtool -K eth0 ntuple on

I ethtool -N eth0 flow-type udp4 dst-port 1234 action 2 loc 0
I Steer IPv4 UDP traffic for port 1234 to rxq 2

I ethtool -N eth0 flow-type udp4 action -1 loc 1
I Drop all UDP IPv4 traffic (except for port 1234)

TC flower example
I ethtool -K eth0 hw-tc-offload on

I tc qdisc add dev eth0 ingress

I tc flower protocol ip parent ffff: flower ip_proto tcp \
dst_port 80 action drop
I Drop all IPv4 TCP traffic for port 80

I tc flower falls back to software filtering if needed

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

 



RSS contexts

I Flows can also be steered to multiple queues at once
I RSS is then used to spread traffic accross queues
I This is achieved through RSS contexts
I An RSS context is simply an indirection table
I An RSS context is created with ethtool :

I ethtool -X eth0 equal 4 context new

I The RSS context is uses as a destination for the flow :
ethtool -N eth0 flow-type udp4 dst-port 1234 context 1 loc 0

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

 



XPS : Transmit Packet Steering

I Upon transmitting packets, the driver executes completion
code

I Transmitting using a single CPU can also lead to cache misses
I XPS is used to select which txq to use for packet sending
I We can assign txqs to CPUs

I The txq is chosen according to the CPU the sender lives on
I We can also assign txqs to rxqs

I Make sure that we use the same CPU for RX and TX
I The NIC driver assigns txqs to CPUs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

 



Using XPS

I Per-CPU mapping :
I echo 0x01 > /sys/class/net/eth0/queues/tx-0/xps_cpus
I echo 0x02 > /sys/class/net/eth0/queues/tx-1/xps_cpus
I Assign txq 0 to CPU 0
I Assign txq 1 to CPU 1

I Per-rxq mapping :
I echo 0x01 > /sys/class/net/eth0/queues/tx-0/xps_rxqs
I echo 0x02 > /sys/class/net/eth0/queues/tx-1/xps_rxqs
I Assign txq 0 to rxq 0
I Assign txq 1 to rxq 1

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/1

 



Fosdem, February 2021

Other offloading
Maxime Chevallier
maxime.chevallier@bootlin.com

© Copyright 2004-2021, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

 



Checksumming

I IPv4 and IPv6 include a checksum in the header
I NICs can compute checksums on the fly in TX mode
I The Kernel leaves the checksum fields empty
I tcpdump will show egress packets with a wrong checksum !!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/1

 



Filtering

I Some NICs are capable of early dropping and filtering
I Frames are dropped by the NIC, no interrupt is ever fired
I MAC filtering :

I Drop frames with an unknown MAC address
I The NIC keeps information about multicast domains
I The NIC must also keep an updated list of unicast addresses
I MAC Vlans allows attaching multiple addresses to one NIC

I VLAN filtering :
I Drop frames for unknown VLANs
I The NIC keeps track of VLANs attached to the interface
I ethtool -K eth0 rx-vlan-filter on

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/1

 



Data insertion and segmentation

I Some NICs can also insert the VLAN tag on the fly
I ethtool -K eth0 txvlan on

I The NIC will insert the VLAN Tag automatically
I ethtool -K eth0 rxvlan on

I The NIC will strip the VLAN tag
I The VLAN tag will be in the descriptor

I Some NICs can also deal with packet segmentation
I ethtool -K eth0 tso on

I Offload TCP segmentation, the NIC will generate segments
I ethtool -K eth0 ufo on

I Offload UDP frafgentation, the NIC will generate fragments

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/1

 



Fosdem, February 2021

XDP
Maxime Chevallier
maxime.chevallier@bootlin.com

© Copyright 2004-2021, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/1

 



Principle

I Execute a BPF program from within the NIC driver
I Executed as early as possible, for fast decision making
I Can be used to Pass, Drop or Redirect frames
I Also used for fine-grained statistics

BPF
I Berkley Packet Filter
I Programming language that can be formally verified
I Designed to write filtering rules
I Lots of hooks in the Networking Stack, XDP being the earliest

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/1

 



AF XDP

I Uses a combination of XDP and flow steering
I Response to DPDK : Userspace does the full packet processing
I Allows for heavily optimized and customized processing
I Special sockets that will directly receive raw buffers
I Thanks to XDP, we can select only part of the traffic for

AF_XDP
I The kernel stack is therefor not entirely bypassed...
I ...and this is a fully upstream solution !

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/1

 



Documentation and sources

I In the Kernel source code :
Documentation/networking/scaling.rst

I RedHat tuning guide:
https://access.redhat.com/documentation/en-
us/red_hat_enterprise_linux/6/html/performance_
tuning_guide/main-network

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/1

 

Documentation/networking/scaling.rst
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/main-network
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/main-network
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/main-network


That’s it

Thank you !

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/1

 


