Making MySQL-8.0 XA transaction
processing crash safe

zettadb.com

David Zhao

About the author

» Zhao Wei (David Zhao) twitter/linkedin/wechat: david.zhao.cn@gmail.com
» Database kernel developer in Oracle 2007-2015
> Berkeley DB
> MySQL
» Database kernel developer in Tencent 2015-2019 .
» TDSQL --- most popular distributed RDBMS inside Tencent and Tencent Publlc/Prlvate Cloud
> Lead the effort to evolve TDSQL from a table-sharding solution to a distributed RDBMS
» Left Tencent and started Kunlun project in Aug 2019
» To build an epochal distributed RDBMS based on widely adopted technologies(MySQL & PostgreSQL).
» For more info about kunlun project visit www.zettadb.com
» Kunlun project is open source at https://github.com/zettadb/kunlun

About Kunlun Distributed RDBMS

» Goals&obijectives
> A distributed RDBMS for PostgreSQL and MySQL users
» with knowledge&lessons learned from work on TDSQL
» compatible with PostgreSQL in DML grammar and most DDL grammar
» compatible with MySQL in client protocol and DML grammar
» to manage multi-terabyte data for both OLTP and inplace OLAP workloads
> Full-fledged NewSQL capabilities
» highly available&fully consistent, crash safe&fault tolerant
» highly scalable: table sharding & elastic horizontal scale-out
» Cloud native & DBaaS
» Stands on the shoulders of giants
» Kunlun computing node derived from PostgreSQL-11.5
» Kunlun storage nodes derived from Percona-MySQL-8.0
» keeps up with upper streams
» Finished over 70% kernel development, released 0.7 in Sep. 2020

Kunlun Architecture

network&cloud
services

Global Metadata
CN1 CN
Replication CN3 CN4
(GMR)
Computing
Nodes(CN)
Storage

[€][e]oF]

Transaction Shards(SS)

Processing
(GTP)

Globally
Consistent

Kunlun Metadata Cluster Backup&Restore
SCBR (GCBR)

Globally Parallel
Query Processing
(GPQP)

l_ Primary

Elastic Scale — > JIT Query
Out Strongly Consistent Binlog Repli tion(SCBR) Compiling
(=5]0))) Y (JQcC)

Replica
Kunlun Cluster_mgr

|2tde||igent Kunlun Distributed DBMS Cluster Intelligent Query
aptive shared components Optimization

Partitioning Kunlun Distributed DBMS Cluster ° (1QO)

(1AP)

Kunlun Advantages & highlights

» Share nothing & adaptive sharding (IAP)
> distribute tables/tablets intelligently to multiple storage shards
» multiple nodes for read & write queries, premium scalability
» Distributed transaction mgmt & distributed query processing
» works transparently, no burden for users, no client code changes needed
» appears like a standalone DB server for apps and app developers
» Crash safety&fault tolerance, high availability&strong consistency (GTP)
» any node/network fault at any time won't break transaction ACID guarantees
» Elastic horizontal scale-out (ESO) (*)
» Automatic & elastic & continuous & on demand
» unnoticible by application or end users
» Full-fledged distributed query processing (IQO) (on-going)
» cross shard join, subqueries, prepared statement, jit
» OLAP analysis, stored procedures and more
» Global parallel query processing (GPQP)
» Inside computing nodes(CN)
» CN send queries to target storage nodes(SN) asyncly so SS work in parallel
» Inside a SN (%)

Kunlun Basics

» Computing nodes
» accept & validate user connections
» accept & process user queries
» parse -> optimize -> execute(send SQL -> receive & assemble)
» executes DDLs and DMLs
» doesn't store user data, only store metadata locally
» takes trivial storage/memory space
» stores user data in storage shards
» can be built from metadata in metadata shard, equivalent to stateless proxies
» needs no HA measures, no burden for DBAs
» add/remove nodes on demand, nodes independent from each other
» Support most PostgreSQL query processing features
» Most DDLs and DMLs grammars
» indexes, views, materialized views, sequences; prepared statement, jit
» cross shard join, subqueries, OLAP queries, stored procedures (on-going)
> All basic data types (numeric, string/text, date/time/timestamp, enum), json&spatial in future
> Will support mysql client protocol and common MySQL private DML grammar(pending)

Kunlun Basics

» Storage shards

» Stores application(user) data in standalone tables
» PG single tables
> PG table partitions

» execute mostly single table queries
» in a global transaction's local transaction branch
» no table partitioning

» Currently uses MySQL group replication(MGR) single primary mode for shard HA
» primary election
» robust consistency guarantees

> Will support more types of HA (*) solutions
» strongly consistent row based binlog replication
» shared storage

» Uses innodb only so far
» never untransactional engines(myisam, etc)
» maybe myrocks in future

» Require kunlun-percona-MySQL-8.0.18-9
> developed based on percona-MySQL-8.0.18-9
» contains critical bug fixes & supporting features & performance enhancements
> Will keep up with upper stream

Kunlun Distributed Transaction Processing

» Global Transaction Coordinator

>

VV VY

A\

component of a computing
node

Tracks txn branch states
2PC for multi-shard writers
1PC for single shard writers
1PC for read-only txn
branches

before 2nd phase, group
log commit decisions in
commit-log

Abort txn on error during
txn commit

client

Metadata
Clu‘ster

Coordinator

RM1

RM2

commit

>

prepare GT1—>'

4— ~prepare OK = =

= = = —prepare OK ——————

commit GT1—>E

commit GTj

<= =commit OK = = =

prepare GTT_V

=L

. ; - ———— commit OK ———————
- ————— commit OK= = = = = = = = = ' .

Potential Failures

» Node failures
» Computing nodes (CNs)
» Primary nodes of storage shards
» Replica nodes of storage shards
» Primary nodes of metadata shards
» Network failures between
» CNs & Meta shard primary
» CNs & Storage shard primary
> A primary MySQL node and its replicas
» Fail while many global txns are in 2PC commit phases
» partial commits
» Fail during binlog group commit
» many regular txns doing internal 2PC (prepare->commit)
» many XA txns doing prepare
» many prepared XA txns doing commit

Requirement for crash-safety & consistency in MySQL

» Keep consistency between

» a primary and its replicas
» replica local sync
» same binlog event groups

» innodb and binlog
» forany txn T, T in innodb <=> T in binlog
» key: no extra event groups in binlog
» challenge: binlog is passive and inflexible

» gtid set in innodb undo log, binlog and mysql.gtid_executed (MGE)
> New requirement for MySQL-8.0 for clone
» txn.gtid -> undo log -> mysql.gtid_executed (MGE)

MySQL Binlog Group Commit (BGC)

Flush Queue Sync Queue Commit Queue
/ : Flush Stage - v : : Sync Stage v : Commit Stage
Flush] # Sync . » Commit
I ===l E==5 ' :
1Done
Follower Threads »| Waiting
client MySQL server binlog Innodb

i—XA Prepare/Commit xaT®
: +———flush xal—
' E.‘......ﬂush OK======== E E
: sync xal—
e~ === sync OK ===~ v
prepare/commit xal———
: o IEREEEL prepare/commit OK:=+=======+

~XA Prepare/Commit OK—:

MySQL-8.0 XA Transaction Processing Issues

» XA Prepare handling in community mysq|l
> step1: binlog prepare GT
» binlog group commit flush&sync phases
» wait for its reception by replicas before flush(MGR) or after sync (semisync)
» step 2: engine(innodb, myrocks, etc) prepare GT
» Issue 1: primary may crash between steps #1 and #2
» Some replicas may have replicated binlogs of GT and replayed it, so GT is prepared in replica(s)
» Crashed primary node has inconsistent binlogs&innodb
» after primary switch, old primary(now replica) can't do 'XA COMMIT GT', replication blocks
» Solution: do binlog prepare after all engine prepare, so the new procedure is:
» step1: engine(innodb, myrocks, etc) prepare GT
> step2: binlog prepare GT
» the solution causes issue 2

MySQL-8.0 XA Transaction Processing Issues

» XA Prepare Issue 2: dilemma caused by MySQL-8.0 clone
» no gtid at step #1, only has gtid at beginning of step #2
» Solution: interleave operations
» engine prepare -> generate gtid -> write gtid to undo log -> flush binlog
» innodb recovery: abort prepared txns without gtid in its undo log
» gtid -> gtid_persistor -> MGE after binlog sync

client MySQL server binlog Innodb
XA Prepare xal—: : :
. prepare xa1'l—>'
B Bhb bbb bt prepare OK:==========="=
alloc gtld—P'

gtid—>undo Iog_D"

E_flush xa1—>
: - == flush OK====""=" :

. . gtid—>gtid_| per3|stor—P'
<@——XA Prepare OK—— .

MySQL-8.0 XA Transaction Processing Issues

» Binlog Recovery

» engine recovery first

» scans last binlog file to form internal XA txn ids S

» why only last binlog ?

» commit/abort each recovered prepared innodb txn if it is/isn't in S

» |Issue 3: external XA txns are ignored in binlog recovery

» Solution: for each prepared external XA txn xi in every storage engine
commit xi if 'XA COMMIT xi' is found in last binlog file
otherwise abort xi if 'XA ROLLBACK xi' is found in last binlog file
otherwise leave xi prepared if 'XA PREAPRE xi' is found in S
otherwise abort xi if 'XA PREPARE xi' isn't found in S
special handling for 'XA COMMIT ONE PHASE'

VVVYVYV

MySQL-8.0 XA Transaction Processing Issues

» Where are prepared txns?
» prepared XA txns can live across binlog file rotations
» |Issue 4: not sufficient to scan last binlog file for prepared external XA txns
» XA PREPARE & XA COMMIT seperated apart
» Solution: record all current prepared external XA txns at creation of each new binlog file
» kunlun-percona: pack into Previous_gtids event
» loss: ecosystem compatibility
» gains: distributed txn crash safety

ysgl= xa start 'xa2'; nysql> show binlog events in 'binlog.000011';

Query OK, ® rows affected (0.080 sec) R R LS e FEED 2
| Log_name | Pos | Event_type | Server_id | End_log_pos | Info |

Fommmmmmm o Fommm- Frmmmmmm oo Frmmmmmmmmme Frmmmmm e e e e e e e e e s e-—--—o------ +

ygq]_:;. insert into ti "JEI-].UE‘S{?,E); | binlog.000011 | 4 | Format_desc | 29511 | 124 | Server ver: 8.0.18-9-kunlun-percona-mysql-debug, Binlog ver: 4 |
binlog.888811 | 124 | Previous_gtids | 29511 | 223 | 51878c3a-547e-11ea-9780-981fd1bd416d:1-9252:1000608-1000667 XA-PREPARED: xal

RROR 1046 (3D008): Mo database selected |+ _______________ S RS o IOl b S e e T A e i I I g T e NI 3 s O S S S .
ysgl= use test 2 rows in set (0.00 sec)
Database changed

FSQ-I.} insert into t1 UBIUES{?,BJ; mysql> show binlog events in 'binleg.@00612';

Fommmmm e +----- Fommmmmm e a Fommmmmm o Fommmm e e e e e e e e e e e e s e s m—— e ——-s----------= +
Duery OK, 1 row affected (90.01 sec) | Log_name | Pos | Event_type | Sserver_id | End_log pos | Info |
e +----- e e e e +
: , | binleg.080012 | 4 | Format _desc | 29511 | 124 | Server ver: 8.0.18-9-kunlun-percona-mysql-debug, Binlog ver: 4 |
ysgl= xa end xaz';: | binlog.®00012 | 124 | Previous_gtids | 29511 | 227 | 51078c3a-547e-11ea-9780-981fd1bd410d:1-9253:1000608-1000667 XA-PREPARED: xal|xaz |
Lo R SR SR F==-=- e L RS R i B L Lt R SRS R e e +
Query OK, ® rows affected (8.61 sec) D o ek chie e
sgl> xa prepare 'xa2': g e Ty
b P P = Query OK, © rows affected (0.04 sec)
Duery 0K, 8 rows affected (0.81 sec)
mysql> show binlog events in 'binlog.000013';
Let EEE LS RS TR S S et Lt ST SRR Frmmmse e Frrrrr e R R L +
| Log_name | Pos | Event_type | Server_id | End_log_pos | Info |
e +----- Fremmmmmm e Fommmmmmem-- e e e +
| binlog.880813 | 4 | Format_desc | 29511 | 124 | Server ver: 8.0.18-9-kunlun-percona-mysql-debug, Binlog ver: 4 |
| binlog.®00013 | 124 | Previous_gtids | 29511 | 231 | 51078c3a-547e-11ea-9780-981fd1bd410d:1-9254:1000608-1600667 XA-PREPARED: xa3|xal|xa2 |
R e +----- B Fommmmm o B e e e e e m e e e e e e e e e e e e e e e e m e e——-o - +

2 rows in set (0.00 sec)

ysql> xa start "xa3’;
Query OK, @ rows affected (0.01 sec)

ysql= insert into t1 values(92,10);
Query OK, 1 row affected (0.00 sec)

ysql> xa end 'xa3';
Query OK, ©® rows affected (0.00 sec)

ysql> xa prepare 'xa3';
Query OK, @ rows affected (0.00 sec)

Thank you!

