
Making MySQL-8.0 XA transaction
processing crash safe

zettadb.com

David Zhao

About the author

 Zhao Wei (David Zhao) twitter/linkedin/wechat: david.zhao.cn@gmail.com
 Database kernel developer in Oracle 2007-2015

 Berkeley DB
 MySQL

 Database kernel developer in Tencent 2015-2019
 TDSQL --- most popular distributed RDBMS inside Tencent and Tencent Public/Private Cloud

 Lead the effort to evolve TDSQL from a table-sharding solution to a distributed RDBMS
 Left Tencent and started Kunlun project in Aug 2019

 To build an epochal distributed RDBMS based on widely adopted technologies(MySQL & PostgreSQL).
 For more info about kunlun project visit www.zettadb.com
 Kunlun project is open source at https://github.com/zettadb/kunlun

 Goals&objectives
 A distributed RDBMS for PostgreSQL and MySQL users

 with knowledge&lessons learned from work on TDSQL
 compatible with PostgreSQL in DML grammar and most DDL grammar
 compatible with MySQL in client protocol and DML grammar
 to manage multi-terabyte data for both OLTP and inplace OLAP workloads

 Full-fledged NewSQL capabilities
 highly available&fully consistent, crash safe&fault tolerant
 highly scalable: table sharding & elastic horizontal scale-out

 Cloud native & DBaaS
 Stands on the shoulders of giants

 Kunlun computing node derived from PostgreSQL-11.5
 Kunlun storage nodes derived from Percona-MySQL-8.0
 keeps up with upper streams
 Finished over 70% kernel development, released 0.7 in Sep. 2020

About Kunlun Distributed RDBMS

Kunlun Architecture

 Share nothing & adaptive sharding (IAP)
 distribute tables/tablets intelligently to multiple storage shards
 multiple nodes for read & write queries, premium scalability

 Distributed transaction mgmt & distributed query processing
 works transparently, no burden for users, no client code changes needed
 appears like a standalone DB server for apps and app developers

 Crash safety&fault tolerance, high availability&strong consistency (GTP)
 any node/network fault at any time won't break transaction ACID guarantees

 Elastic horizontal scale-out (ESO) (*)
 Automatic & elastic & continuous & on demand
 unnoticible by application or end users

 Full-fledged distributed query processing (IQO) (on-going)
 cross shard join, subqueries, prepared statement, jit
 OLAP analysis, stored procedures and more

 Global parallel query processing (GPQP)
 Inside computing nodes(CN)
 CN send queries to target storage nodes(SN) asyncly so SS work in parallel
 Inside a SN (*)

Kunlun Advantages & highlights

 Computing nodes
 accept & validate user connections
 accept & process user queries

 parse -> optimize -> execute(send SQL -> receive & assemble)
 executes DDLs and DMLs

 doesn't store user data, only store metadata locally
 takes trivial storage/memory space
 stores user data in storage shards
 can be built from metadata in metadata shard, equivalent to stateless proxies

 needs no HA measures, no burden for DBAs
 add/remove nodes on demand, nodes independent from each other

 Support most PostgreSQL query processing features
 Most DDLs and DMLs grammars
 indexes, views, materialized views, sequences; prepared statement, jit
 cross shard join, subqueries, OLAP queries, stored procedures (on-going)
 All basic data types (numeric, string/text, date/time/timestamp, enum), json&spatial in future

 Will support mysql client protocol and common MySQL private DML grammar(pending)

Kunlun Basics

 Storage shards
 Stores application(user) data in standalone tables

 PG single tables
 PG table partitions

 execute mostly single table queries
 in a global transaction's local transaction branch
 no table partitioning

 Currently uses MySQL group replication(MGR) single primary mode for shard HA
 primary election
 robust consistency guarantees

 Will support more types of HA (*) solutions
 strongly consistent row based binlog replication
 shared storage

 Uses innodb only so far
 never untransactional engines(myisam, etc)
 maybe myrocks in future

 Require kunlun-percona-MySQL-8.0.18-9
 developed based on percona-MySQL-8.0.18-9
 contains critical bug fixes & supporting features & performance enhancements
 will keep up with upper stream

Kunlun Basics

Kunlun Distributed Transaction Processing

 Global Transaction Coordinator
 component of a computing

node
 Tracks txn branch states
 2PC for multi-shard writers
 1PC for single shard writers
 1PC for read-only txn

branches
 before 2nd phase, group

log commit decisions in
commit-log

 Abort txn on error during
txn commit

Potential Failures

 Node failures
 Computing nodes (CNs)
 Primary nodes of storage shards
 Replica nodes of storage shards
 Primary nodes of metadata shards

 Network failures between
 CNs & Meta shard primary
 CNs & Storage shard primary
 A primary MySQL node and its replicas

 Fail while many global txns are in 2PC commit phases
 partial commits

 Fail during binlog group commit
 many regular txns doing internal 2PC (prepare->commit)
 many XA txns doing prepare
 many prepared XA txns doing commit

Requirement for crash-safety & consistency in MySQL

 Keep consistency between
 a primary and its replicas

 replica local sync
 same binlog event groups

 innodb and binlog
 for any txn T, T in innodb <=> T in binlog
 key: no extra event groups in binlog
 challenge: binlog is passive and inflexible

 gtid set in innodb undo log, binlog and mysql.gtid_executed (MGE)
 New requirement for MySQL-8.0 for clone
 txn.gtid -> undo log -> mysql.gtid_executed (MGE)

MySQL Binlog Group Commit (BGC)

MySQL-8.0 XA Transaction Processing Issues

 XA Prepare handling in community mysql
 step1: binlog prepare GT

 binlog group commit flush&sync phases
 wait for its reception by replicas before flush(MGR) or after sync (semisync)

 step 2: engine(innodb, myrocks, etc) prepare GT
 Issue 1: primary may crash between steps #1 and #2

 Some replicas may have replicated binlogs of GT and replayed it, so GT is prepared in replica(s)
 Crashed primary node has inconsistent binlogs&innodb
 after primary switch, old primary(now replica) can't do 'XA COMMIT GT', replication blocks

 Solution: do binlog prepare after all engine prepare, so the new procedure is:
 step1: engine(innodb, myrocks, etc) prepare GT
 step2: binlog prepare GT
 the solution causes issue 2

 XA Prepare Issue 2: dilemma caused by MySQL-8.0 clone
 no gtid at step #1, only has gtid at beginning of step #2

 Solution: interleave operations
 engine prepare -> generate gtid -> write gtid to undo log -> flush binlog
 innodb recovery: abort prepared txns without gtid in its undo log
 gtid -> gtid_persistor -> MGE after binlog sync

MySQL-8.0 XA Transaction Processing Issues

MySQL-8.0 XA Transaction Processing Issues

 Binlog Recovery
 engine recovery first
 scans last binlog file to form internal XA txn ids S

 why only last binlog ?
 commit/abort each recovered prepared innodb txn if it is/isn't in S
 Issue 3: external XA txns are ignored in binlog recovery
 Solution: for each prepared external XA txn xi in every storage engine

 commit xi if 'XA COMMIT xi' is found in last binlog file
 otherwise abort xi if 'XA ROLLBACK xi' is found in last binlog file
 otherwise leave xi prepared if 'XA PREAPRE xi' is found in S
 otherwise abort xi if 'XA PREPARE xi' isn't found in S
 special handling for 'XA COMMIT ONE PHASE'

MySQL-8.0 XA Transaction Processing Issues

 Where are prepared txns?
 prepared XA txns can live across binlog file rotations
 Issue 4: not sufficient to scan last binlog file for prepared external XA txns

 XA PREPARE & XA COMMIT seperated apart
 Solution: record all current prepared external XA txns at creation of each new binlog file

 kunlun-percona: pack into Previous_gtids event
 loss: ecosystem compatibility
 gains: distributed txn crash safety

Thank you!

