
Making MySQL-8.0 XA transaction
processing crash safe

zettadb.com

David Zhao

About the author

 Zhao Wei (David Zhao) twitter/linkedin/wechat: david.zhao.cn@gmail.com
 Database kernel developer in Oracle 2007-2015

 Berkeley DB
 MySQL

 Database kernel developer in Tencent 2015-2019
 TDSQL --- most popular distributed RDBMS inside Tencent and Tencent Public/Private Cloud

 Lead the effort to evolve TDSQL from a table-sharding solution to a distributed RDBMS
 Left Tencent and started Kunlun project in Aug 2019

 To build an epochal distributed RDBMS based on widely adopted technologies(MySQL & PostgreSQL).
 For more info about kunlun project visit www.zettadb.com
 Kunlun project is open source at https://github.com/zettadb/kunlun

 Goals&objectives
 A distributed RDBMS for PostgreSQL and MySQL users

 with knowledge&lessons learned from work on TDSQL
 compatible with PostgreSQL in DML grammar and most DDL grammar
 compatible with MySQL in client protocol and DML grammar
 to manage multi-terabyte data for both OLTP and inplace OLAP workloads

 Full-fledged NewSQL capabilities
 highly available&fully consistent, crash safe&fault tolerant
 highly scalable: table sharding & elastic horizontal scale-out

 Cloud native & DBaaS
 Stands on the shoulders of giants

 Kunlun computing node derived from PostgreSQL-11.5
 Kunlun storage nodes derived from Percona-MySQL-8.0
 keeps up with upper streams
 Finished over 70% kernel development, released 0.7 in Sep. 2020

About Kunlun Distributed RDBMS

Kunlun Architecture

 Share nothing & adaptive sharding (IAP)
 distribute tables/tablets intelligently to multiple storage shards
 multiple nodes for read & write queries, premium scalability

 Distributed transaction mgmt & distributed query processing
 works transparently, no burden for users, no client code changes needed
 appears like a standalone DB server for apps and app developers

 Crash safety&fault tolerance, high availability&strong consistency (GTP)
 any node/network fault at any time won't break transaction ACID guarantees

 Elastic horizontal scale-out (ESO) (*)
 Automatic & elastic & continuous & on demand
 unnoticible by application or end users

 Full-fledged distributed query processing (IQO) (on-going)
 cross shard join, subqueries, prepared statement, jit
 OLAP analysis, stored procedures and more

 Global parallel query processing (GPQP)
 Inside computing nodes(CN)
 CN send queries to target storage nodes(SN) asyncly so SS work in parallel
 Inside a SN (*)

Kunlun Advantages & highlights

 Computing nodes
 accept & validate user connections
 accept & process user queries

 parse -> optimize -> execute(send SQL -> receive & assemble)
 executes DDLs and DMLs

 doesn't store user data, only store metadata locally
 takes trivial storage/memory space
 stores user data in storage shards
 can be built from metadata in metadata shard, equivalent to stateless proxies

 needs no HA measures, no burden for DBAs
 add/remove nodes on demand, nodes independent from each other

 Support most PostgreSQL query processing features
 Most DDLs and DMLs grammars
 indexes, views, materialized views, sequences; prepared statement, jit
 cross shard join, subqueries, OLAP queries, stored procedures (on-going)
 All basic data types (numeric, string/text, date/time/timestamp, enum), json&spatial in future

 Will support mysql client protocol and common MySQL private DML grammar(pending)

Kunlun Basics

 Storage shards
 Stores application(user) data in standalone tables

 PG single tables
 PG table partitions

 execute mostly single table queries
 in a global transaction's local transaction branch
 no table partitioning

 Currently uses MySQL group replication(MGR) single primary mode for shard HA
 primary election
 robust consistency guarantees

 Will support more types of HA (*) solutions
 strongly consistent row based binlog replication
 shared storage

 Uses innodb only so far
 never untransactional engines(myisam, etc)
 maybe myrocks in future

 Require kunlun-percona-MySQL-8.0.18-9
 developed based on percona-MySQL-8.0.18-9
 contains critical bug fixes & supporting features & performance enhancements
 will keep up with upper stream

Kunlun Basics

Kunlun Distributed Transaction Processing

 Global Transaction Coordinator
 component of a computing

node
 Tracks txn branch states
 2PC for multi-shard writers
 1PC for single shard writers
 1PC for read-only txn

branches
 before 2nd phase, group

log commit decisions in
commit-log

 Abort txn on error during
txn commit

Potential Failures

 Node failures
 Computing nodes (CNs)
 Primary nodes of storage shards
 Replica nodes of storage shards
 Primary nodes of metadata shards

 Network failures between
 CNs & Meta shard primary
 CNs & Storage shard primary
 A primary MySQL node and its replicas

 Fail while many global txns are in 2PC commit phases
 partial commits

 Fail during binlog group commit
 many regular txns doing internal 2PC (prepare->commit)
 many XA txns doing prepare
 many prepared XA txns doing commit

Requirement for crash-safety & consistency in MySQL

 Keep consistency between
 a primary and its replicas

 replica local sync
 same binlog event groups

 innodb and binlog
 for any txn T, T in innodb <=> T in binlog
 key: no extra event groups in binlog
 challenge: binlog is passive and inflexible

 gtid set in innodb undo log, binlog and mysql.gtid_executed (MGE)
 New requirement for MySQL-8.0 for clone
 txn.gtid -> undo log -> mysql.gtid_executed (MGE)

MySQL Binlog Group Commit (BGC)

MySQL-8.0 XA Transaction Processing Issues

 XA Prepare handling in community mysql
 step1: binlog prepare GT

 binlog group commit flush&sync phases
 wait for its reception by replicas before flush(MGR) or after sync (semisync)

 step 2: engine(innodb, myrocks, etc) prepare GT
 Issue 1: primary may crash between steps #1 and #2

 Some replicas may have replicated binlogs of GT and replayed it, so GT is prepared in replica(s)
 Crashed primary node has inconsistent binlogs&innodb
 after primary switch, old primary(now replica) can't do 'XA COMMIT GT', replication blocks

 Solution: do binlog prepare after all engine prepare, so the new procedure is:
 step1: engine(innodb, myrocks, etc) prepare GT
 step2: binlog prepare GT
 the solution causes issue 2

 XA Prepare Issue 2: dilemma caused by MySQL-8.0 clone
 no gtid at step #1, only has gtid at beginning of step #2

 Solution: interleave operations
 engine prepare -> generate gtid -> write gtid to undo log -> flush binlog
 innodb recovery: abort prepared txns without gtid in its undo log
 gtid -> gtid_persistor -> MGE after binlog sync

MySQL-8.0 XA Transaction Processing Issues

MySQL-8.0 XA Transaction Processing Issues

 Binlog Recovery
 engine recovery first
 scans last binlog file to form internal XA txn ids S

 why only last binlog ?
 commit/abort each recovered prepared innodb txn if it is/isn't in S
 Issue 3: external XA txns are ignored in binlog recovery
 Solution: for each prepared external XA txn xi in every storage engine

 commit xi if 'XA COMMIT xi' is found in last binlog file
 otherwise abort xi if 'XA ROLLBACK xi' is found in last binlog file
 otherwise leave xi prepared if 'XA PREAPRE xi' is found in S
 otherwise abort xi if 'XA PREPARE xi' isn't found in S
 special handling for 'XA COMMIT ONE PHASE'

MySQL-8.0 XA Transaction Processing Issues

 Where are prepared txns?
 prepared XA txns can live across binlog file rotations
 Issue 4: not sufficient to scan last binlog file for prepared external XA txns

 XA PREPARE & XA COMMIT seperated apart
 Solution: record all current prepared external XA txns at creation of each new binlog file

 kunlun-percona: pack into Previous_gtids event
 loss: ecosystem compatibility
 gains: distributed txn crash safety

Thank you!

