
Bernd Ocklin
Snr Director MySQL Cluster Development

About me

Bernd Ocklin

Product Owner MySQL NDB Cluster at Oracle

with NDB and MySQL since 2005

Massively linear scale

Sharded Distributed Datasets
Parallel Real-Time Performance.
Auto-partitioning, data distribution
and replication built-in.

Read- and Write Scale-Out
TBs on commodity hardware.

Always-On 99.9999% Availability
Designed for mission critical
systems. Masterless, shared-nothing
with no single point of failure.Always Consistent

Transactional consistency across
distributed and partitioned dataset.

Out of the box straightforward
application programming.
Standalone or with MySQL
as a SQL front-end.

Ease of use

Open Source
Written in C++.

Shared Nothing
Written in C++. Can be used standalone
or with MySQL as a SQL front-end.

MySQL Cluster Industries

Telecom

Financials

Gaming & Massive Parallel Online Games

Why Cloud Native?

Speed

Fast introduction of
new services

Scaling

Fast scaling from
hundred of users to
millions

Efficient Operations

Automation
Lifecycle

Performance / Capacity

Improved capacity
Better resource
utilisation

Fit for kubernetes?

VMs or container?

VM Containers / K8

workload isolation ++ o / ++

performance + ++

IO o ++

operations - ++

maturity / community / best practices ++ +

footprint - +

cloud native principles o ++

*) e.g. katacontainers

But running databases in a container and kubernetes?

• Yes, you can run any database in a container. Period.
• Just a matter of workload to serve and requirements.
• Milage varies with database’s suitability.

Suitable databases and cloud native principles

Resilience

Losing parts of the
system should not
be a big deal.

It should
automatically
recover and heal it
self.

Shared-Nothing

Cloud-native
databases can
operate without
centralized
management or
any single point of
failure.

Scaling, sharding

Distributed data

Scaling out, not up

Sharding.

Distributed, cloud-
native databases
should present a the
same view of data
independent of
instance queried.
With the
consistency
guarantees of a
single-machine
system.

Standards

Cloud-native
databases should
also support query
standards.

Consistency

Cloud native databases

MySQL NDB classic RDMS InnoDB Cluster

Resilience

Shared-nothing

Consistent view of data

Scaling out, sharding

Standard query language

Self healing

Stateless?

• You should architect your system to be intentional about
when, and how, you store state

• Design components to be stateless wherever  
you can

• Not stateless but smart about state,  
state optimized!

Kubernetes

Analytics
Reporting Orchestration Operation Orchestration

& Automation

State”less”
Microservices

Data Layer

Platform  
Services

(Cloud)
Infrastructure

Highly Available
Object Store

Kubernetes Objects running a database

Container

Container
docker hub

 . . .
 containers:
 - image: mysql/mysql-cluster:8.0.22
 imagePullPolicy: IfNotPresent
 name: ndb
 command: ["/bin/bash"]
 args:
 - -ecx
 - /usr/sbin/ndbd -c mgmd-0.ndb-svc.default.svc.cluster.local \
 —initial --nodaemon -v

Kubernetes Objects running a database

Pod

Container

Container
docker hub

Workload Resources

Pod

Pod

Container

Container

Workload API

apiVersion: apps/v1 # for versions before 1.9.0 use apps/v1beta2
kind: StatefulSet
...
spec:
...
 serviceName: ndb-svc
 template:
 spec:
 containers:
 - image: mysql/mysql-cluster:8.0.22
 ...
 volumeMounts:
 - name: ndb-persistent-storage
 mountPath: /var/lib/ndb
 - name: config-volume
 mountPath: /var/lib/ndb/config

Running MySQL Cluster in Kubernetes with StatefulSets

Pod

StatefulSet

Pod

Container

Container

• Stable, unique network identifiers.
• Stable, persistent storage.
• Ordered, graceful deployment and scaling.
• Ordered, automated rolling updates.

Headless Service providing network identity

Pod
Headless
Service

StatefulSet

Network
identity

Pod

Container

Container

apiVersion: v1
kind: Service
metadata:
 name: ndb-svc
 labels:
 app: ndb
spec:
 ports:
 - port: 1186
 selector:
 app: ndb
 clusterIP: None

ConfigMaps to “inject” configuration into Pods/Containers

Pod
Headless
Service

StatefulSet

Network
identity

ConfigMap

Pod

Container

Container

Config as volume

kind: ConfigMap
apiVersion: v1
metadata:
 name: ndb-configmap
 namespace: default
data:
 config.ini: |
 [ndbd default]
 # NDB redundancy level
 NoOfReplicas=3

Persistent
Volume Claim

Use Persistent Volumes for storage

Pod
Headless
Service

Persistent
Volume

StatefulSet

Network
identity

Persistent
Volume Claim

Persistent
Volume

ConfigMap

Pod

Container

Container

Config as volume

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: ndb-pv-claimp
 labels:
 app: ndb
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

NDB Architecture

“stateless” 
Microservices

optional
SQL Layer

MySQL NDB Cluster

Partitioning- and distribution engine

MySQL NDB Cluster in Kubernetes

Pod

Sidecar container

Data Node container

Persistent
Volume Claim

Persistent
Volume

ConfigMap

Pod

Sidecar container

Management Node container
Config

Data- and trace files

MySQL NDB Cluster in Kubernetes

De
pl

oy
m

en
t

Cluster

St
at

ef
ul

Se
t

NDB Cluster

Data NodeData Node

Data NodeData Node

Mgm Node

StatefulSet

Mgm Node

Po
d

Po
d

Po
d

Po
d

Po
d

Po
d

Demo - deploying manually

https://www.github.com/ocklin/ndb-k8-manually

https://www.github.com/ocklin/ndb-k8-manually

Best practices

DNS “stability”

• Pods
• reschedule on other Kubernetes nodes
• change IP addresses
• consider DNS TTL, time to resolve new host address
• GRANT … TO  
‘username’@<IP-address>

• Use AllowUnresolvedHostnames=1
• Retry

!

Service Mesh Istio

• Envoy is a proxy
• connects to cluster will “look like” connects  

from localhost
• cluster expects connects from remote host
• use TcpBind_INADDR_ANY = 1

Sidecars

• Always use a most minimal maintenance container
• idle, low resource
• but allows parallel access to volumes  

and stored data
• easier debugging if things go wrong

Kubernetes is complex

• Many layers and teams responsible
• Lots of people or resources to blame if  

something goes wrong
• Observability is key!

PodDisruptionBudgets and Eviction API

• Eviction API considers pod disruption budgets
• e.g. used when draining kubernetes nodes

• makes sure that you do not accidentally  
shutdown all your nodes of the database

• kubectl delete ignores  
PodDisruptionBudgets!

PodAffinity and AntiAffinity

• All nodes have labels, make heavy use of labels!
• PodAffinity allows to prefer k8 nodes with labels to e.g.

• keep database nodes apart across racks or ADs
• avoid collocation of instances sharing  

same data
• prefer faster storage (e.g. SSD)

MySQL NDB Operator

Kubernetes Operators

• Declarative approach
• Manages services “like a human”
• Based on  

Custom Resource Definitions

Operator reconciliation driving towards desired state

K8
Object
Store

kube
controller

etcd

kube
scheduler

api server

container

Container
Runtime

image

Kublet

image

containerget
wanted state

get
actual state

take mitigation
actions

operator controllers workers

…

…

control plane

$ kubectl apply -f operator-crd.yaml

MySQL NDB Cluster in Kubernetes

De
pl

oy
m

en
t

Kubernete

St
at

ef
ul

Se
t

NDB Cluster

Ndb operator

backup /
restore

controller

mysql
controll

NDB
controller

Data NodeData Node

Data NodeData Node

Mgm Node

St
at

ef
ul

Se
t

Mgm Node

CRD

Operator Demo

Ndb Custom Resource Definition

apiVersion: mysql.oracle.com/v1alpha1
kind: Ndb
metadata:
 name: example-ndb
spec:
 containerImage: mysql/mysql-cluster:8.0.22
 nodecount: 2
 redundancyLevel: 2
 mysqld:
 nodecount: 2

Thank You

Bernd Ocklin

Snr Director
MySQL Cluster Development

