
Alexander Jung <a.jung@lancs.ac.uk>
Felipe Huici <felipe.huici@neclab.eu>
Sharan Santhanam <sharan.santhanam@neclab.eu>
Simon Kuenzer <simon.kuenzer@neclab.eu>

Building Extremely Fast, Specialized
Unikernels The Easy Way

This work has received funding from the European Union’s Horizon 2020 research and innovation program
under grant agreements no. 871793 (“ACCORDION”) and 825377 (“UNICORE”). This work reflects only the
author’s views and the European Commission is not responsible for any use that may be made of the
information it contains.

FOSDEM’21

2 © NEC Corporation 2021

Specialization = High Performance

3 © NEC Corporation 2021

▌Hardware

● TPUs
● Movidius
● FPGAs

Specialization = High Performance

Costly…

inherently scoped...

4 © NEC Corporation 2021

▌Networking

● Sandstorm \w Marinos, Ilias, Robert NM Watson, and Mark Handley. "Network
stack specialization for performance." ACM SIGCOMM Computer Communication
Review 44.4 (2014): 175-186.

● Kuenzer, Simon, et al. "Towards minimalistic, virtualized content caches with
MiniCache." Proceedings of the 2013 workshop on Hot topics in middleboxes
and network function virtualization. 2013.

● Martins, Joao, et al. "ClickOS and the art of network function virtualization."
11th USENIX Symposium on Networked Systems Design and Implementation
(NSDI’14). 2014.

Specialization = High Performance

5 © NEC Corporation 2021

▌ Language-specific runtime environments

● MirageOS \w Madhavapeddy, Anil, and David J. Scott. "Unikernels: Rise of the
virtual library operating system." Queue 11.11 (2013): 30-44.

● Erlang on Xen (LING) http://erlangonxen.org

● runtime.js http://runtimejs.org/

Specialization = High Performance

6 © NEC Corporation 2021

1. Small image size

2. Fast boot times

3. Low memory consumption

4. High throughput

5. Potentially more secure

Specialization in Virtualization = Unikernels

7 © NEC Corporation 2021

Achieving Unikernel Performance

1. Transparently: applications are ported and automatically
benefit from lower boot times, less memory consumption, etc.

2. Modified: applications are hooked into high performance
APIs at the right level in the software stack

8 © NEC Corporation 2021

UDP

9 © NEC Corporation 2021

Doing it with Linux?

10 © NEC Corporation 2021

Doing it with existing unikernels?

1. They require significant expert work to build and to
extract high performance; such work has to for the most part
be redone for each target application.

2. They are often non-POSIX compliant, requiring porting of
applications and language environments.

3. The (uni)kernels themselves, while smaller, are still monolithic
and hard to customize.

11 © NEC Corporation 2021

Design Principles

1. The kernel should be fully modular in order to
allow for the unikernel to be fully and easily
customizable.

2. The kernel should provide a number of
performance-minded, well-defined APIs that can
be easily selected and composed in order to meet an
application’s performance needs.

12 © NEC Corporation 2021

Unikraft Overview

13 © NEC Corporation 2021

14 © NEC Corporation 2021

But is it possible to provide transparent
application support?

15 © NEC Corporation 2021

How does Binary Compatibility compare?

Platform Routine call # Cycles nsecs

Linux/KVM
System call 604.62 232.55

System call (no mitigations) 142.31 54.74

Unikraft/KVM System call 85.0 32.69

Both Function call 6.0 2.31

16 © NEC Corporation 2021

Transparently Building from Source?

App native build
system

.obj and
.a files

statically
compile

U
ni

kr
af

t
st

ac
k

link
(Unikraft

Build system)

m
us

l
(P

O
S
IX

)
sy

sc
al

l
sh

im

17 © NEC Corporation 2021

Compile time

18 © NEC Corporation 2021

How much syscall support is enough?

A study of modern Linux API usage and compatibility: what to support when you're supporting.
Tsai et. Al, Eurosys 2016

Unikraft
~140

19 © NEC Corporation 2021

What Unikraft Could Transparently Support

Syscalls required by
a set of 30 popular
server apps vs.
Syscalls currently
supported by
Unikraft

20 © NEC Corporation 2021

If all else fails – Manual Porting

21 © NEC Corporation 2021

What Unikraft Supports

On-going:

22 © NEC Corporation 2021

Base Performance Evaluation

23 © NEC Corporation 2021

24 © NEC Corporation 2021

Unikernel image size compared to other projects

25 © NEC Corporation 2021

Boot time of Unikraft with different VMMs

26 © NEC Corporation 2021

Minimum memory needed to run an application

27 © NEC Corporation 2021

NGINX performance with wrk

28 © NEC Corporation 2021

Redis performance tested with redis-benchmark

29 © NEC Corporation 2021

Specialization Performance Evaluation

30 © NEC Corporation 2021

Unikraft image sizes

31 © NEC Corporation 2021

32 © NEC Corporation 2021

Unikraft NGINX throughput \w diff mem allocators

33 © NEC Corporation 2021

Unikraft NGINX boot time \w diff mem allocators

34 © NEC Corporation 2021

Execution speedup of SQLite relative to mimalloc

35 © NEC Corporation 2021

Throughput with Redis using redis-benchmark

36 © NEC Corporation 2021

37 © NEC Corporation 2021

38 © NEC Corporation 2021

39 © NEC Corporation 2021

Filesystem Specialization for web caching

40 © NEC Corporation 2021

41 © NEC Corporation 2021

Key-value store application specialization

Linux Baremetal Linux KVM Guest Unikraft KVM Guest

Single Batch Single Batch DPDK LWIP Netdev DPDK

509K/s 985K/s 105K/s 276K/s 6.1M/s 250K/s 6M/s 6.1M/s

42 © NEC Corporation 2021

TX throughput of Unikraft vs. Linux KVM VM

43 © NEC Corporation 2021

Future directions on Specialization

● Compartmentalization
1. write critical micro-libs in memory safe, race condition safe or statically

verifiable languages

2. compile and link them together

3. use HW assisted memory separation (CHERI, Intel MPKs, etc.) to retain

languages’ properties

● Code reduction

● Sealing (hypervisor call to set pages as read-only or execute-only

after boot)

● Upstream standard features (ASLR, stack protection etc.)

● Fuzzing (for verification of above)

44 © NEC Corporation 2021

Find us online

https://github.com/unikraft

http://unikraft.org

<minios-devel@lists.xenproject.org>
<unikraft@listserv.neclab.eu>

@UnikraftSDK

https://github.com/unikraft
http://unikraft.org
mailto:minios-devel@lists.xenproject.org
mailto:unikraft@listserv.neclab.eu
https://twitter.com/UnikraftSDK

45 © NEC Corporation 2021

Thanks

