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Specialization = High Performance
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▌Hardware

● TPUs
● Movidius
● FPGAs

Specialization = High Performance

Costly…

inherently scoped...
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▌Networking

● Sandstorm \w Marinos, Ilias, Robert NM Watson, and Mark Handley. "Network 
stack specialization for performance." ACM SIGCOMM Computer Communication 
Review 44.4 (2014): 175-186.

● Kuenzer, Simon, et al. "Towards minimalistic, virtualized content caches with 
MiniCache." Proceedings of the 2013 workshop on Hot topics in middleboxes 
and network function virtualization. 2013.

● Martins, Joao, et al. "ClickOS and the art of network function virtualization." 
11th USENIX Symposium on Networked Systems Design and Implementation 
(NSDI’14). 2014.

Specialization = High Performance
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▌ Language-specific runtime environments

● MirageOS \w Madhavapeddy, Anil, and David J. Scott. "Unikernels: Rise of the 
virtual library operating system." Queue 11.11 (2013): 30-44.

● Erlang on Xen (LING)  http://erlangonxen.org

● runtime.js  http://runtimejs.org/

Specialization = High Performance
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1. Small image size

2. Fast boot times

3. Low memory consumption

4. High throughput

5. Potentially more secure

Specialization in Virtualization = Unikernels
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Achieving Unikernel Performance

1. Transparently: applications are ported and automatically 
benefit from lower boot times, less memory consumption, etc.

2. Modified: applications are hooked into high performance 
APIs at the right level in the software stack
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UDP
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Doing it with Linux?
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Doing it with existing unikernels?

1. They require significant expert work to build and to 
extract high performance; such work has to for the most part 
be redone for each target application.

2. They are often non-POSIX compliant, requiring porting of 
applications and language environments. 

3. The (uni)kernels themselves, while smaller, are still monolithic 
and hard to customize.
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Design Principles

1. The kernel should be fully modular in order to 
allow for the unikernel to be fully and easily 
customizable. 

2. The kernel should provide a number of 
performance-minded, well-defined APIs that can 
be easily selected and composed in order to meet an 
application’s performance needs. 
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Unikraft Overview
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But is it possible to provide transparent 
application support?
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How does Binary Compatibility compare?

Platform Routine call # Cycles nsecs

Linux/KVM
System call 604.62 232.55

System call (no mitigations) 142.31 54.74

Unikraft/KVM System call 85.0 32.69

Both Function call 6.0 2.31
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Transparently Building from Source?
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Compile time
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How much syscall support is enough?

A study of modern Linux API usage and compatibility: what to support when you're supporting.
Tsai et. Al, Eurosys 2016

Unikraft
~140
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What Unikraft Could Transparently Support

Syscalls required by 
a set of 30 popular 
server apps vs. 
Syscalls currently 
supported by 
Unikraft
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If all else fails – Manual Porting
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What Unikraft Supports

On-going:
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Base Performance Evaluation
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Unikernel image size compared to other projects
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Boot time of Unikraft with different VMMs
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Minimum memory needed to run an application
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NGINX performance with wrk 



28 © NEC Corporation 2021

Redis performance tested with redis-benchmark
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Specialization Performance Evaluation
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Unikraft image sizes
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Unikraft NGINX throughput \w diff mem allocators
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Unikraft NGINX boot time \w diff mem allocators
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Execution speedup of SQLite relative to mimalloc
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Throughput with Redis using redis-benchmark
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Filesystem Specialization for web caching
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Key-value store application specialization

Linux Baremetal Linux KVM Guest Unikraft KVM Guest

Single Batch Single Batch DPDK LWIP Netdev DPDK

509K/s 985K/s 105K/s 276K/s 6.1M/s 250K/s 6M/s 6.1M/s
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TX throughput of Unikraft vs. Linux KVM VM
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Future directions on Specialization

● Compartmentalization
1. write critical micro-libs in memory safe, race condition safe or statically 

verifiable languages

2. compile and link them together

3. use HW assisted memory separation (CHERI, Intel MPKs, etc.) to retain 

languages’ properties

● Code reduction

● Sealing (hypervisor call to set pages as read-only or execute-only 

after boot)

● Upstream standard features (ASLR, stack protection etc.)

● Fuzzing (for verification of above)
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Find us online

https://github.com/unikraft

http://unikraft.org 

<minios-devel@lists.xenproject.org>
<unikraft@listserv.neclab.eu>

@UnikraftSDK

https://github.com/unikraft
http://unikraft.org
mailto:minios-devel@lists.xenproject.org
mailto:unikraft@listserv.neclab.eu
https://twitter.com/UnikraftSDK
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Thanks


