
The seL4® Report
An Update From seL4 Land

gernot@sel4.systems

Gernot Heiser
Chair, seL4 Foundation

https://sel4.systems/Foundation

The Highlights of the Year

2FOSDEM, Feb'21 Gernot Heiser: The seL4 Report

08/11/2020 VeL4 iV YeriÀed on RISC-V! _ microkerneldXde

hWWpV://microkerneldXde.ZordpreVV.com/2020/06/09/Vel4-iV-YeriÀed-on-riVc-Y/ 1/4

PLFURNHUQHOGXGH
RDQGRP UDQWV DQG SRQWLÀFDWLRQV E\ GHUQRW HHLVHU

TAGS
open source, operating s\stems, risc-Y, securit\

ZL3��PZ�]LYPÄLK�VU°90:*�=�

2020/06/09
Sounds great! But Zhat does it mean?

ZL3�

seL4 (KWWSV://VHO4.V\VWHPV/) (pronounced eVV-e-ell-foXU) is
arguabl\ the Zorld·s most secure operating s\stem (OS) kernel.¬

The OS kernel is the loZest leYel of softZare running on a computer s\stem. It is the code that
e[ecutes in priYileged mode (S-mode in RISC-V; M-mode is reserYed for microcode/ÀrmZare).¬ The
kernel is ultimatel\ responsible for the securit\ of a computer s\stem.¬

seL4 is a microkernel (KWWSV://HQ.ZLNLSHGLD.RUJ/ZLNL/MLFURNHUQHO). The idea of a microkernel is to
minimise the WUXVWed compXWing baVe ² the part of the s\stem for Zhich there is no Plan B if it fails. The
Linu[and WindoZs kernels consist of tens of millions of lines of code, and contain literall\
thousands (more likel\ tens of thousands) of bugs ² a huge attack surface. A Zell-designed
microkernel, such as seL4, has about ten thousand lines ² inherentl\ more trustZorth\
(KWWSV://WV.GDWD61.FVLUR.DX/SXEOLFDWLRQV/FVLURBIXOOBWH[W//BLJJVBLHB18.SGI).

What sets seL4 aside from all other OS kernels, including other microkernels, is its YeriÀcation stor\.
It Zas the Zorld·s Àrst OS kernel Zith a machine-checked, mathematical proof of the fXncWional
coUUecWneVV of its C implementation (Zinning us a Hall of Fame AZard
(KWWSV://ZZZ.VLJRSV.RUJ/DZDUGV/KRI/) as a result). This means that it is proYed to be bug-free relatiYe
to a speciÀcation formulated in a mathematical logic. And b\ noZ it has proofs about further securit\
properties (Zhich shoZ that the speciÀcation has the right properties) and functional correctness
e[tending doZn to the binar\ code. And it has the most adYanced support for hard real-time s\stems.
And it is the Zorld·s fastest microkernel. It·s best in class b\ an\ deÀnition
(KWWSV://PLFURNHUQHOGXGH.ZRUGSUHVV.FRP/2019/08/06/10-\HDUV-VHO4-VWLOO-WKH-EHVW-VWLOO-JHWWLQJ-
EHWWHU/).

We originall\ YeriÀed seL4 for 32-bit Arm processors. We then e[tended that to 64-bit [86 processors.
And noZ to RISC-V RV64 processors. Which noZ coYers all the important ISAs.

ZL3��VU�90:*�=

The Highlights of the Year

seL4 Foundation -- Overview 3

ü The seL4 Foundation (June’s talk right after this):
Ø Open governance for the seL4 ecosystem
Ø Trademark registration in Australia and US, others in progress

ü Verification: RISC-V (RV64) functional correctness proof done!
Ø Binary verification (translation correctness) progressing
Ø MCS verification progressing (see my FOSDEM’20 talk)

ü seL4 System development
Ø RFCs for seL4 Core, seL4 Core Platform
Ø soon: RFC for seL4 driver framework

ü Research:
Ø Verifying time protection
Ø Secure multi-server OS

Background
What is seL4?

FOSDEM, Feb'21 Gernot Heiser: The seL4 Report 4

Background: What is ?

seL4 is an open source, high-assurance, high-performance operating system microkernel

Piece of software that
runs at the heart of any
system and controls all
accesses to resources

World’s most comprehensive
mathematical proofs of
correctness and security

Available on GitHub
under GPLv2 license

World’s fastest
microkernel

hardware

software

critical non-critical,
untrusted

attack
s

FOSDEM, Feb'21 Gernot Heiser: The seL4 Report 5

What is ?

seL4 is the most trustworthy foundation for safety- and security-critical systems

Already in use across many domains:
automotive, aviation, space, defence, critical infrastructure,
cyber-physical systems, IoT, industry 4.0, certified security...

FOSDEM, Feb'21 Gernot Heiser: The seL4 Report 6

A few
more months

for RISC-V

Now done
for RISC-V!

Unique Verification by Mathematical Proof

RISC-V Summit, Dec'20 Gernot Heiser: seL4 on RISC-V 7

Proof Pr
oo

f

Proof

Integrity

Abstract
Model

C Imple-
mentation

Confidentiality Availability

Binary code

Pr
oo

f
Pr

oo
f

Functional
Correctness

Translation
Correctness

Security
Enforcement

seL4: Still only capability-
based OS kernel with
correctness proof!

seL4: The only OS
on RISC-V with
correctness proof

Complete proof chain
for ARMv7 (32-bit)

… and Performance

Source seL4 Fiasco.OC Zircon

Mi et al, 2019 986 2717 8157

Gu et al, 2020 1450 3057 8151

seL4.systems, Nov’20 797 N/A N/A

FOSDEM, Feb'21 Gernot Heiser: The seL4 Report 8

Latency (in cycles) of a round-trip cross-address-space IPC on x64

Sources:
• Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, Haibo Chen: “SkyBridge: Fast and Secure

Inter-Process Communication for Microkernels”, EuroSys, April 2020
• Jinyu Gu, Xinyue Wu, Wentai Li, Nian Liu, Zeyu Mi, Yubin Xia, Haibo Chen: “Harmonizing

Performance and Isolation in Microkernels with Efficient Intra-kernel Isolation and
Communication”, Usenix ATC, June 2020

• seL4 Performance, https://sel4.systems/About/Performance/, accessed 2020-11-08

Temporary performance
regression in Dec’19

Still the world’s
fastest microkernel!

https://sel4.systems/About/Performance/

Making seL4 Easier to Use
The seL4 Core Platform

FOSDEM, Feb'21 Gernot Heiser: The seL4 Report 9

Why seL4 Core Platform?

seL4 Summit, Nov'20 Ben Leslie & Gernot Heiser: The seL4 Core Platform 10

The seL4 API is (for good reason):
• very general
• very low-level
• architecture-dependent
• very spartan
… and requires a lot of expertise to use correctly

Almost all present deployments are:
• embedded/cyber-physical systems
• simple, static architectures

With seL4 we achieved unprecedented levels
of security and user-unfriendliness [2015]

See https://microkerneldude.wordpress.com/2020/
03/11/sel4-design-principles/

Aims of the seL4 Core Platform

seL4 Foundation -- Overview 11

Small OS for IoT, cyber-physical and other embedded use cases
ü Ease development and deployment
ü Provide reasonable degree of application portability, defined HW interfaces
ü Support implementation diversity through well-defined interfaces
ü Support code re-use between related deployments
ü Simple programming model ensures ”correct” use of seL4 mechanisms
ü Retain near-minimal trusted computing base (TCB)
ü Leverage seL4-enforced isolation for strong security/safety
ü Retain seL4’s superior performance
ü Be amenable to formal verification of the TCB

The seL4 Core Platform is POSIX-Compliant

seL4 Summit, Nov'20 Ben Leslie & Gernot Heiser: The seL4 Core Platform 12

Posix is past its use-by date,
and too inefficient for seL4.
See Curtis Millar’s seL4 Summit talk

Of Course Not

For legacy software
use virtual machines!Core Platform properties:

• Simple execution model
• Simple communication model
• Real-time capable
• Efficient
• Deadlock-free
• Some integrity properties

enforced by build tools
• Suitable for formal reasoning

Target Hardware: Embedded SoCs

seL4 Summit, Nov'20 Ben Leslie & Gernot Heiser: The seL4 Core Platform 13

• Homogenous multicore
• Shared L2 cache
• Single system image
• Uniform memory access
• Accelerators (GPUs etc)

are “devices”

Core

L1-I L1-D

L2

Core

L1-I L1-D

Devices

Software

seL4 Core Platform DriversN/W

Application

Core Platform Abstractions

seL4 Summit, Nov'20 Ben Leslie & Gernot Heiser: The seL4 Core Platform 14

Memory Region (MR)

Protection
Domain (PD)

Communication
Channel (CC)Notification

f(){
…

}
f(..);

Protected Procedure
Call (PPC)

Protection
Domain (PD)

Abstractions: Protection Domain

seL4 Summit, Nov'20 Ben Leslie & Gernot Heiser: The seL4 Core Platform 15

Memory Region (MR)

Protection
Domain (PD)

Communication
Channel (CC)Notification

f(){
…

}
f(..);

Protected Procedure
Call (PPC)

R

Protection
Domain (PD)

Superficially similar to Unix process
• … but much more lightweight
Consists of several seL4 objects:
• VSpace – virtual memory map
• CSpace – access right
• Scheduling context (SC)
• Priority (fixed)
• Notification

Contains:
• Init procedure
• Notification procedure
• Optional: Protected procedure (PP)

• Runs once, on
• PD’s prio and SC • Invoked when PD’s

notification is signalled
• Runs on PD’s prio and SC
• Bound to a Core!

• Invoked from other PD
• Runs on PD’s prio but

caller PD’s SC

• All three execute atomically with
respect to each other!

• They may
• signal another PD’s notification
• call another PD’s PP

See https://microkerneldude.wordpress.com/2019/
03/07/how-to-and-how-not-to-use-sel4-ipc/

Abstractions: Memory Region

seL4 Summit, Nov'20 Ben Leslie & Gernot Heiser: The seL4 Core Platform 16

Protection
Domain (PD)

Communication
Channel (CC)Notification

f(){
…

}
f(..);

Protected Procedure
Call (PPC)

Protection
Domain (PD)

R

Memory Region (MR)

Represents physical memory
• contiguous
• integer multiple of page size
• page-aligned

May be mapped into one or more PDs
• at a virtual address
• with defined caching attributes
• with specific permissions

May be attached to a CC
• shared buffer
• zero-copy communication

MR

Memory Region (MR)

Abstractions: Communication Channels

seL4 Summit, Nov'20 Ben Leslie & Gernot Heiser: The seL4 Core Platform 17

Protection
Domain (PD)

Notification

f(){
…

}
f(..);

Protected Procedure
Call (PPC)

Protection
Domain (PD)

R

Supports communication between PDs
• connects exactly two PDs
• any pair of PDs has at most one common CC
• data flow can be uni- or bidirectional
• information flow is bi-directional (no data diode!)

Communication
Channel (CC)

Supported channel operations:
• reading/writing the channel’s MR

– if mapped into the accessing PD
• referencing channel buffer locations
• signalling the other PD’s Notification
• calling the other PD’s PP (if available)

In general:
• no trust relationship implied
• CCs form non-directed,

cyclic graph

MR

Using reference wrappers,
not plain pointers!Potentially cross-core

Memory Region (MR)

Abstractions: Notifications

seL4 Summit, Nov'20 Ben Leslie & Gernot Heiser: The seL4 Core Platform 18

f(){
…

}
f(..);

Protected Procedure
Call (PPC)

R

Protection
Domain (PD)

Protection
Domain (PD) Communication

Channel (CC)

MR

Support triggering of events:
• can signal PD’s Notification through CC
• this invokes target PD’s notification procedure
• Platform provides source PD’s identity

• uses seL4’s badged capabilities
• Signalling is asynchronous

• Notifications are binary semaphores
• Multiple signals from same PD may not

invoke notification procedure multiple times
• Processing of signals from multiple PDs should

happen in priority order
• Ideally enforced by Core Platform tooling

• For now limit of 64 CCs per PD (seL4 limitation)

Notification

Are associated with a PD
• exactly one per PD

Communication
Channel (CC)

Memory Region (MR)

Abstractions: Protected Procedure Calls

seL4 Summit, Nov'20 Ben Leslie & Gernot Heiser: The seL4 Core Platform 19

Protection
Domain (PD)

Notification Protection
Domain (PD)

MyAdventureWithAlice@gmail.com

Supports execution of code in a different PD
• Callee (“server”) must have a PP
• Caller (“client”) and callee must share a CC
• PPC arguments may reference locations in

the CC’s MR (using reference wrappers)
• Arguments limited to 16 words in total
• PPCs may nest

f(){
…

}
f(..);

Protected Procedure
Call (PPC)

Asymmetric relationship:
• Client trusts server
• PPC must not block
• Server must be higher prio than client
• Remember: PPC runs on client’s SC

and thus the client’s core!
• PPCs form acyclic, directed graph

Enforceable by build tools!

Abstractions: Virtual Machine (VM)

seL4 Summit, Nov'20 Ben Leslie & Gernot Heiser: The seL4 Core Platform 20

Memory Region (MR)

Protection
Domain (PD)

Communication
Channel (CC)Notification

f(){
…

}
f(..);

Protected Procedure
Call (PPC)

RVM

Guest OS

Apps

A VM is a PD with extra attributes
• supports extra execution mode (guest mode)
• else behaves like any PD

• may share MRs
• may signal/be signalled
• may be client or server of a PPC

• Not yet fully specified
• Not supported in first version

Core Platform Considerations

seL4 Summit, Nov'20 Ben Leslie & Gernot Heiser: The seL4 Core Platform 21

Initially all PDs will be single-core
• Single scheduling context means single core

This restriction will be removed in
the near future for pure client PDs
• PDs without a PPC

• For now targeting static architectures:
• All PDs known at build time

Will (eventually) support late
loading/re-loading of (known) PDs

Supporting multi-threaded
servers is possible
• a bit more complicated
• ≤ 1 thread per core

Summary: seL4 Core Platform

seL4 Summit, Nov'20 Ben Leslie & Gernot Heiser: The seL4 Core Platform 22

Memory Region (MR)

Protection
Domain (PD)

Communication
Channel (CC)Notification

f(){
…

}
f(..);

Protected Procedure
Call (PPC)

Protection
Domain (PD)

• Designed to ease construction of well-
designed seL4-based embedded systems

• Design mostly complete: RFC-5
• Will integrate with the seL4 Driver Framework
• We’ll provide best-practice training material

Research Update
Verifying time protection

Secure multi-server OS

FOSDEM, Feb'21 Gernot Heiser: The seL4 Report 23

What’s the Issue with Temporal Isolation?

seL4 Summit, Nov'20 Gernot Heiser: seL4 State of the Union 24

Safety: Timeliness
• Execution interference

Security: Confidentiality
• Leakage via timing channels

High Low

Observe execution speed:
Confidentiality violation

Affect execution speed:
Integrity violation –
deadline miss

Addressed by
MCS kernel
[FOSDEM’20] Addressed by

time protection

Shared hardware

Cause: Competition for HW Resources

FOSDEM, Feb'21 Gernot Heiser: The seL4 Report 25

High Low

Affect execution speed

• Inter-process interference
• Competing access to micro-architectural features
• Hidden by the HW-SW contract!

Solution: Time Protection –
Eliminate interference by
preventing sharing

Time Protection: Partition all Hardware State

FOSDEM, Feb'21 Gernot Heiser: The seL4 Report 26

Cache

High Low

Flush

Temporally
partition

Cannot spatially partition on-
core caches (L1, TLB, branch
predictor, pre-fetchers)

• virtually-indexed

• OS cannot control

Spatially partition Flushing useless for
concurrent access

• HW threads

• cores

Need
both!
Need
both!

Cache

High Low

Cache

High Low

More details:
• [Heiser, FOSDEM’20]
• [Ge et al, EuroSys’19]

Measuring Leakage: Channel Matrix

FOSDEM, Feb'21 Gernot Heiser: The seL4 Report 27

Trojan cache footprint (n)

S
py

 e
xe

cu
tio

n
tim

e
(t)

Channel matrix:
• Conditional probability of observing

output signal (t), given input (n)
• Represented as heat map:

• bright: high probability
• dark: low probability

Variation along a
horizontal line

indicates a channel

D-cache channel on x86 Haswell, no mitigation

Channel

Measuring Leakage: Channel Matrix

FOSDEM, Feb'21 Gernot Heiser: The seL4 Report 28

Trojan cache footprint (n)

S
py

 e
xe

cu
tio

n
tim

e
(t)

Variation along a
horizontal line

indicates a channel

D-cache channel on x86 Haswell, no mitigation D-cache channel on Haswell, time protection

Trojan cache footprint (n)

No channel

Channel

Challenge: Broken Hardware

Gernot Heiser: The seL4 Report 29 |

BHB channel on x86 Sky Lake, no mitigation BHB channel on x86 Sky Lake, time protection

Small channel!

FOSDEM, Feb'21

BHB channel on Arm Cortex A53, time protection

Cache sets

Challenge: Broken Hardware

Gernot Heiser: The seL4 Report 30 |

BHB channel Arm Cortex A53, no mitigation

Ti
m

e
(c
yc
le
s)

Cache sets

Large channel!

Systematic study of COTS Hardware [Ge et al, APSys’18]:
• contemporary processors hold state that cannot be reset
• need a new hardware-software contract to enable real security

FOSDEM, Feb'21

RISC-V To The Rescue!

FOSDEM, Feb'21 Gernot Heiser: The seL4 Report 31

New instruction fence.t: flush of all micro-
architectural state in ETH Ariane processor and
evaluated channels on FPGA implementation

BHB channel Ariane, no mitigation BHB channel Ariane, time protection

Large channel

No channel!

Similar result for all other channels
[Wistoff et all, DATE’21]

On-Going Work

FOSDEM, Feb'21 Gernot Heiser: The seL4 Report 32

Time protection
prototype

Assumes sane
(non-existent)

hardware

Prove:
no leakage

Develop usable
system model

Include fence.t in
RISC-V ISA spec

Combine with
temporal integrity (MCS)

Fix
hardware

Verify
efficacy

Make usable

Make
complete

Stay tuned!

Research: Secure Multi-Server OS

seL4 Foundation -- Overview 33

Aim: A truly secure, general-purpose OS
ü Support wide class of use cases, fully dynamic
ü Support wide class of security policies
ü Support changes of security policy during execution
ü Support least privilege (aka principle of least authority, POLA)
ü Support formal verification of security policy enforcement

Ø Incl confidentiality, integrity, availability
ü Performance comparable to monolithic systems

Secure Multi-Server OS Features

seL4 Foundation -- Overview 34

ü Policy-mechanism separation:
Ø Servers implement abstractions independent of security policy
Ø Policy is encapsulated in a single security server

ü Dynamic information-flow control:
Ø Communication limited by security policy

ü Resource-availability guarantee through resource donation
ü Performance by minimising security overhead

Ø Checks only on connection establishment
Ø Connection removed on policy change

ü Design for formal verification
Stay tuned for detailed white paper!

Take-Aways:
ü seL4 Foundation takes seL4 to the next level

Ø open development
Ø open governance
Ø community funding
Ø maturing ecosystem
Ø increasing deployments

ü RISC-V is now a first-class seL4 architecture
Ø functional correctness done, other verification in progress

ü Ambitious research agenda:
Ø provably eliminate timing channels
Ø secure, general-purpose multi-server OS

seL4: Defining the state of the art in secure OS since 2009
FOSDEM, Feb'21 Gernot Heiser: The seL4 Report 35

If you’re a member of the
seL4 Community, please let
us know how you want the
next seL4 Summit to look!

Questions?

FOSDEM, Feb'21 Gernot Heiser: The seL4 Report 36

Licensing: What Does the GPL Imply?

Your application code any

kernel.org source
• core kernel
• device drivers
• NW stacks
• file systems
• …

GPL v2

Platform port:
• device drivers
• platform init
• … GPL v2

Your
system services:
libs, drivers, …

GPL v2

Valuable IP

Foundation
kernel source

GPL v2 Platform port:
• timer
• serial
• IRQ controller
• platform init

GPL v2

Your
system
services:
libs, drivers, …

any
Foundation system
services:
libs, drivers,
NW stacks…

BSD

Your application code any

Boiler plate

Valuable IP

FOSDEM, Feb'21 Gernot Heiser: The seL4 Report 37

What Does This Mean?

Kinds of properties proved
• Behaviour of C code is fully captured by abstract model

• Behaviour of C code is fully captured by executable model

• Kernel never fails, behaviour is always well-defined

• assertions never fail
• will never de-reference null pointer
• will never access array out of bounds

• cannot be subverted by misformed input
• …

• All syscalls terminate, reclaiming memory is safe, ...

• Well typed references, aligned objects, kernel always mapped…

• Access control is decidable

38Gernot Heiser: seL4 on RISC-V

Can prove further
properties on
abstract level!

RISC-V Summit, Dec'20

How Can I Use It?
ü Open source (GPL v2): Download from https://github.com/sel4

ü But keep in mind: seL4 is an OS microkernel and hypervisor, not an OS!

ü Many OS components available on the seL4 GitHub

Gernot Heiser: seL4 on RISC-V 39 |RISC-V Summit, Dec'20

Native
Apps

OS
Services

Device
Drivers

Kernel
Mode

User
Mode

How Can I Use It?
ü Open source (GPL v2): Download from https://github.com/sel4

ü But keep in mind: seL4 is an OS microkernel and hypervisor, not an OS!

ü Many OS components available on the seL4 GitHub

ü Alternative: HENSOLDT Cyber’s TRENTOS

Gernot Heiser: seL4 on RISC-V 40 |RISC-V Summit, Dec'20

Kernel
Mode

User
Mode

MiG-V: HENSOLDT-Cyber RV64 Processor (based on Ariane)

TRENTOS

Secure
Boot Crypto

SD
Driver

E/N
Driver

TCP/IPFile
System

Key
Store Loader

Logger License
Manager

Secure
Update

TLS
Stack

Supply-chain
security through
logic obfuscation

Verified!

So, Why Aren’t We Done?

FOSDEM, Feb'21 Gernot Heiser: The seL4 Report 41

Proof Pr
oo

f

Proof

Integrity

Abstract
Model

C Imple-
mentation

Confidentiality Availability

Binary code

Pr
oo

f
Pr

oo
f

Functional
Correctness

Translation
Correctness

Security
Enforcement

Still only capability-based
OS kernel with functional
correctness proof

Still the world’s
fastest microkernel!

• seL4’s verification provides the best
possible guarantee of spatial isolation

• It says nothing about temporal isolation

What’s the Issue with Temporal Isolation?

FOSDEM, Feb'21 Gernot Heiser: The seL4 Report 42

Safety: Timeliness
• Execution interference

Security: Confidentiality
• Leakage via timing channels

High Low

Observe execution speed:
Confidentiality violation

Affect execution speed:
Integrity violation –
deadline miss

Addressed by
MCS kernel

Addressed by
time protection

MCS Kernel: Capabilities for Time

FOSDEM, Feb'21 Gernot Heiser: The seL4 Report 43

Traditional seL4: Capabilities
authorise access to spatial resources:
• Memory
• Threads
• Address spaces
• Communication endpoints
• Interrupts
• … MCS model: Capabilities

also authorise CPU time
• Scheduling objects

Scheduling Contexts

FOSDEM, Feb'21 Gernot Heiser: The seL4 Report 44

Classical thread attributes
Ø Priority

Ø Time slice

New thread attributes
Ø Priority

Ø Scheduling context capability

44 |

Scheduling context object
T: period
C: budget (≤ T)

C = 2
T = 3

C = 250
T = 1000

Scheduling-context object
specifies CPU bandwidth limit

Ensure time available to
lower-priority threads

Budget Donation

FOSDEM, Feb'21 Gernot Heiser: The seL4 Report 45

Client1
P1

45
|

Server
Pmax

Running

Running

Client2
P2

Scheduling-context capabilities: a
principled, light-weight OS mechanism for
managing time [Lyons et al, EuroSys’18]

Server runs on client’s
scheduling context

Client is charged
for server’s time

MCS Summary

FOSDEM, Feb'21 Gernot Heiser: The seL4 Report 46

Generally much cleaner model,
cleans up a number of other things
⇒ Use for all new work!

• Verification getting close
(Arm v7 and RV64)

• Legacy model will be
archived once verification
is done

Partition Hardware: Page Colouring

FOSDEM, Feb'21 Gernot Heiser: The seL4 Report 47

High Low

TCB PT TCB PT

Cache

Cache

RAM

• Partitions get frames of disjoint colours
preventing interference

• seL4: userland supplies kernel memory
⇒ colouring userland colours dynamic kernel memory

• Per-partition kernel image to colour kernel
[Ge et al. EuroSys’19]

Small amount of static
kernel memory needs
special handling

Temporal Partitioning: Flush on Switch

Gernot Heiser: The seL4 Report

1. T0 = current_time()

2. Switch user context

3. Flush on-core state

4. Touch all shared data needed for return

5. while (T0+WCET < current_time()) ;

6. Reprogram timer

7. return

Latency depends
on prior execution!

Time padding
to remove

dependency

Ensure
deterministic

execution

Must remove any
history dependence!

48 |FOSDEM, Feb'21

Evaluation: Prime & Probe Attack

FOSDEM, Feb'21 Gernot Heiser: The seL4 Report 49

High Low

2. Touch n cache lines

1. Fill cache with own data

2.

3. Traverse cache,

measure execution time

Trojan
encodes

Spy observes

Input signal

Output signal

Can We Verify Time Protection?

FOSDEM, Feb'21 Gernot Heiser: The seL4 Report 50

Assume we have:
• hardware that implements a suitable contract,
• a formal specification of that hardware,
can we prove that our kernel eliminates all timing channels?

Proving Spatial Partitioning

FOSDEM, Feb'21 Gernot Heiser: The seL4 Report 51

High Low

TCB PT TCB PT

Cache

Cache

RAM

To prove: No two domains share hardware†

• Requires abstract model of partitionable
hardware (cache model)

• Functional property, use existing techniques

†Remaining shared
kernel data needs
separate argument

†Core idea: Convert
timing channels into
storage channels!

Proving Temporal Partitioning

Gernot Heiser: The seL4 Report

1. T0 = current_time()

2. Switch user context

3. Flush on-core state

4. Touch all shared data needed for return

5. while (T0+WCET < current_time()) ;

6. Reprogram timer

7. return

52 |

Prove: flush all non-partitioned HW
• Needs model of stateful HW
• Somewhat idealised on present HW

… but matches our Ariane
• Functional property

Prove: access to shared data
is deterministic
• Each access sees same

cache state
• Needs cache model
• Functional property

Prove: padding is
correct – how?

FOSDEM, Feb'21

Use Minimal Abstraction of Clocks

Gernot Heiser: The seL4 Report 53 |

Abstract clock = monotonically increasing counter
Operations:
• Add constant to clock value
• Compare clock values

To prove: padding loop terminates as soon as clock ≥ T0+WCET
• Functional property!

FOSDEM, Feb'21

Status
ü Published analysis of hardware mechanisms (APSys’18) – Best Paper

ü Published time protection design and analysis (EuroSys’19) – Best Paper
◦ demonstrated effectiveness within limits set by hardware flaws (Arm, x86)

ü Published planned approach to verification (HotOS’19)

ü Published minimal hardware support for time protection (CARRV’20)
◦ evaluation demonstrated efficacy and performance

Ø Working on:
◦ Integrating time-protection mechanisms with clean seL4 model
◦ Done: Rebased experimental kernel off latest seL4 mainline (x86, Arm, RISC-V)
◦ In progress: Real system model that integrates the mechanisms

◦ Proving timing-channel absence (on conforming hardware)
◦ Done: Confidentiality proofs for flushing and time padding on simplified HW model
◦ In progress: Include pre-fetching of data
◦ To do: Extend to realistic hardware model

Gernot Heiser: The seL4 Report 54 |FOSDEM, Feb'21

