MySQL Performance for DevOps

c)2020 Percona

Sveta Smirnova

 MySQL Support engineer Author of MySQL Troubleshooting
 JSON UDF functions FILTER clause for MySQL Speaker Percona Live, OOW, Fosdem, DevConf, HighLoad...

Table of Contents Introduction

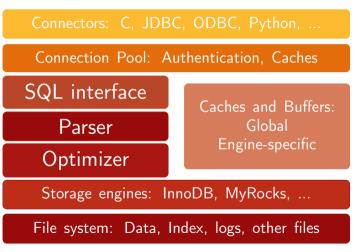
Hardware

 MySQL Configuration Important Options How MySQL Uses CPU Important Options Continued

•Query Tuning Indexes Optimizer Configuration

©2020 Percona

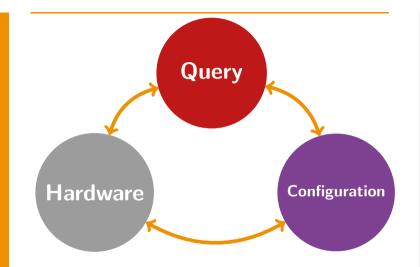
Introduction


What is MySQL?

Database server

- 9 25 years of history
- Popular forks
 - Percona Server for MySQL
 - MariaDB Server
 - Replication support from the beginning

MySQL Architecture


- mysqld
- Connectors
- Optimizer
- Caches
- Storage Engines
- Management

©2020 Percona

What Affects Performance?

©2020 Percona

Hardware

No swapping
 sysctl vm.swappiness=1

No swapping

 sysctl vm.swappiness=1

 NUMA interleave

 Enable in BIOS

No swapping

- sysctl vm.swappiness=1
- NUMA interleave
 Enable in BIOS

More is better

No swapping

- sysctl vm.swappiness=1
- NUMA interleave
 Enable in BIOS
 - More is better
 - Memory access is faster than disk

- No swapping
 - sysctl vm.swappiness=1
- NUMA interleave
 Enable in BIOS
 - More is better
 - Memory access is faster than disk
 - Frequently accessed data should be in memory

Disk Configuration

Faster is better SSD NVMe Spinning disk

Disk Configuration Faster is better
 SSD
 NVMe
 Spinning disk

Parallel writes

Disk Configuration Faster is better
 SSD
 NVMe
 Spinning disk
 Parallel writes
 Battery-backed cache

CPU Configuration

IO scheduler

- [noop] or [deadline]
- sudo echo noop >
 /sys/block/DISK/queue/scheduler
 or sudo echo deadline >
 /sys/block/DISK/queue/scheduler

CPU Configuration

- IO scheduler
 - [noop] or [deadline]
 - sudo echo noop >
 /sys/block/DISK/queue/scheduler
 or sudo echo deadline >
 /sys/block/DISK/queue/scheduler
- CPU governor
 - Set to performance

CPU Configuration

- IO scheduler
 - [noop] or [deadline]
 - sudo echo noop >
 /sys/block/DISK/queue/scheduler
 or sudo echo deadline >
 /sys/block/DISK/queue/scheduler
- CPU governor
 - Set to performance
- More cores is better

Network Configuration

As fast as possible

- Speed of the line
 - RTT
- BandwidthStability
 - - To avoid TCP packet re-submission

Network Configuration

As fast as possible

- On the Internet connection
 - Clients can work
 - Asynchronous replica will delay
 - Synchronous clusters will be not functional
 - Node disconnects with default options
 - Very slow response times with adjusted configuration

MySQL Configuration

System Variables:

How to Change

System Variables:

How to Change

SET [GLOBAL] var = NEW_VALUE
 Command-line option

 --var=new_value

System Variables:

How to Change

SET [GLOBAL] var = NEW_VALUE Command-line option --var=new value Configuration file In the default location Specified by option --defaults-file [mysqld] var=new value

MySQL Configuration

Important Options

16

innodb_buffer_pool_size
 Ideally should hold active data set

16

innodb_buffer_pool_size
innodb_log_file_size
Should hold changes for an hour

innodb_buffer_pool_size
 innodb_log_file_size
 Should hold changes for an hour
 Too low

©2020 Percona

16

innodb_buffer_pool_size
 innodb_log_file_size
 Should hold changes for an hour
 Good

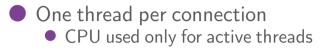
innodb_buffer_pool_size

- innodb_log_file_size
- innodb_io_capacity
 - Default is too small for fast disks
 - Up to number of IOPS your disk can handle
 - Do not set too high!

innodb_buffer_pool_size
innodb_log_file_size
innodb_io_capacity
innodb_flush_method

In most cases: O_DIRECT
Test on your filesystem!

innodb_buffer_pool_size
innodb_log_file_size
innodb_io_capacity
innodb_flush_method
innodb_thread_concurrency
0 or number of CPU cores


MySQL Configuration

How MySQL Uses CPU

How MySQL Uses CPU

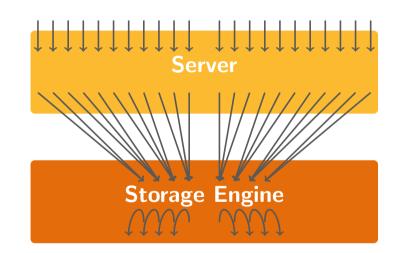
18

©2020 Percona

How MySQL Uses CPU

18

One thread per connection
 CPU used only for active thread


• CPU used only for active threads

Background work by storage engines

Connection and Engine Threads

? <= CPU cores?

20

? <= CPU cores? Yes Executed simultaneously

20

? <= CPU cores? Yes Executed simultaneously No Wait in a queue

? <= CPU cores? Yes Executed simultaneously No Wait in a queue ? Does the disk support parallel write?

20

? <= CPU cores?
Yes Executed simultaneously
No Wait in a queue
? Does the disk support parallel write?
Yes Write happens

20

? <= CPU cores?
Yes Executed simultaneously
No Wait in a queue
? Does the disk support parallel write?
Yes Write happens
No Wait in a queue

MySQL Configuration

Important Options Continued

22

• Changing these compromize durability!

©2020 Percona

Changing these compromize durability!

innodb_flush_log_at_trx_commit
1: full ACID, default

- innodb_flush_log_at_trx_commit
 - 1: full ACID, default
 - 2: logs written at each commit, flushed per second
 - MySQL can handle up to 1M INSERTs per second
 - Safe with PXC, Galera and InnoDB Clusters

- innodb_flush_log_at_trx_commit
 - 1: full ACID, default
 - 2: logs written at each commit, flushed per second
 - 0: logs are written and flushed once per second

- innodb_flush_log_at_trx_commit
 - 1: full ACID, default
 - 2: logs written at each commit, flushed per second
 - 0: logs are written and flushed once per second
 - Once per second not guaranteed for 0 and 2
 - DDL can cause faster flushing
 - Scheduling may delay flushing

- innodb_flush_log_at_trx_commit
- sync_binlog
 - 0: Synchronization handled by the system
 - 1: At each transaction commit, default
 - No transaction lost
 - N: After N binary log group commits
 - In case of power or OS crash not flushed transactions can be lost

Table Handlers

table_open_cache

- The number of open tables for all threads
- Increase when
 - Connections in the PROCESSLIST are waiting for opening a table
 - Value of global status variable Opened_tables is larger than Open_tables

Table Handlers

table_open_cache

- table_definition_cache
 - Size of the cache for table definitions
 Increase when
 - Value of Opened_table_definitions is larger than Open_table_definitions

Table Handlers

23

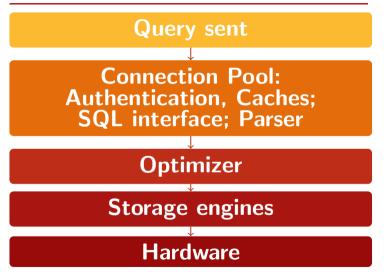
table_open_cache table_definition_cache Increase OS open files limit if needed

Query Tuning

Heart of the application

 You communicate with database using queries

- Even via NoSQL interface
- They are not SQL queries, but still queries

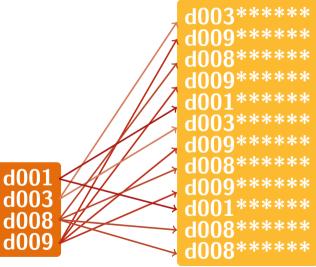

Heart of the application

 You communicate with database using queries

- Even via NoSQL interface
- They are not SQL queries, but still queries
- Data, that you request, matters
 1 000 000 000 must
 - 1,000,000,000 rows

vs 1 row

Query execution workflow


Query Tuning

Indexes

MySQL Indexes

- B-Tree Mostly
- LSM Tree
- Fractal Tree
- R-Tree Spatial
- Hash Memory SE
- Engine's

Conditions

• WHERE the_column = a_value

- WHERE the_column IN(value1, value2, value3)
- WHERE the_column LIKE 'value%'
- WHERE the_column LIKE '%value'

Conditions

WHERE left_part = value1 AND right_part = value2 WHERE left_part = value1 OR right_part = value2 WHERE right_part = value1 AND left_part = value2 WHERE right_part = value1 OR left_part = value2

Joins

30

table1 JOIN table2 ON table1.column1 = table2.column2

Joins

table1 JOIN table2 ON
table1.column1 =
table2.column2

Same as FROM table1, table2 WHERE table1.column1 = table2.column2

GROUP BY

GROUP BY the_column

GROUP BY left_part, right_part

- GROUP BY right_part, left_part
- GROUP BY the_index, another_index

ORDER BY

ORDER BY the_column

ORDER BY left_part, right_part

- ORDER BY right_part, left_part
- ORDER BY the_index, another_index

ORDER BY

5.7 ORDER BY left_part DESC, right_part ASC 8.0 ORDER BY left_part DESC, right_part ASC left_part must be descending right_part must be ascending the_index(left_part DESC,

right_part ASC)

Expressions

33

• Deterministic, **built-in**

- Return same value for the same argument
- WHERE the_column = FLOOR(123.45)

Expressions

• Deterministic, **built-in**

- Return same value for the same argument
- WHERE the_column = FLOOR(123.45)
- Non-deterministic
 - Return different values for different calls
 NUTERE the second secon
 - WHERE the_column = RAND() * 100

Expressions

• Deterministic, **built-in**

- Return same value for the same argument
- WHERE the_column = FLOOR(123.45)
- Non-deterministic
 - Return different values for different calls
 WHERE the_column = RAND() * 100
- Stored functions and UDFs
 - 👤 Indexes are not used
 - N
 - MySQL: Use indexes on generated columns

MariaDB: Use indexes on generated columns

Query Tuning

Optimizer Configuration

Temporary tables

- tmp_table_size
- max_heap_table_size
- default_tmp_storage_engine

Temporary tablesBuffers for query execution

- join_buffer_size
 - JOIN conditions, not using indexes

Temporary tables

- join_buffer_size
- read_buffer_size
 - Caching indexes for ORDER BY
 - Bulk insert into partitions
 - Caching result of nesting queries

• Temporary tables

- join_buffer_size
- read_buffer_size
- read_rnd_buffer_size
 - Multi-Range Read optimization

Temporary tables

- join_buffer_size
- read_buffer_size
- read_rnd_buffer_size
- select_into_buffer_size
 - SELECT INTO OUTFILE
 - SELECT INTO DUMPFILE

• Temporary tables

- join_buffer_size
- read_buffer_size
- read_rnd_buffer_size
- select_into_buffer_size
- sort_buffer_size
 - ORDER BY
 - GROUP BY

Temporary tables

- join_buffer_size
- read_buffer_size
- read_rnd_buffer_size
- select_into_buffer_size
- sort_buffer_size
- Change only at the session level!

Conclusion

Hardware

RAM: more is better Disk: SSD or NVMe CPU: more cores, better concurrency Net: highest speed possible

Conclusion

Hardware

- Configuration
 - InnoDB
 - innodb_buffer_pool_size
 - innodb_log_file_size
 - innodb_thread_concurrency
 - innodb_io_capacity
 - innodb_flush_method
 - innodb_flush_log_at_trx_commit
 - Server
 - sync_binlog
 - table_open_cache
 - table_definition_cache

Conclusion

- Hardware
- Configuration
 - Query Performance

 - Add indexes
 Adjust Optimization buffers
 - tmp_table_size
 - join_buffer_size
 - read_buffer_size
 - read_rnd_buffer_size
 - select into buffer size
 - sort_buffer_size

More information

Troubleshooting hardware resources Troubleshooting configuration issues MySQL Query Tuning for DevOps Percona Monitoring and Management Percona Kubernetes Operators

Thank you!

www.slideshare.net/SvetaSmirnova
twitter.com/svetsmirnova
github.com/svetasmirnova

