
Latest tech, great!
Accessibility, not so
much.

Oana Mangiurea
Senior UX Designer @ Grafana Labs
@Caelea

#FOSDEM2021

“Computer accessibility refers to the accessibility of a computer

system to all people, regardless of disability type or severity of

impairment.”

One billion people, or 15% of the world's population, experience

some form of disability.

At least 10% of the adult population has a vision impairment.

Vision • Mobility • Auditory • Neurological • Cognitive • Medical • Psychological

Why should you care?

Plus you get...

● A tool or app that is easier to use by everyone

● A bigger user or contributor base, as more people can use your project

● Advantage over your competitors

● Cater for clients whose businesses have a mandatory accessibility requirement for the software that

they use, like federal agencies

● Potentially expose areas in UI or user flow that need improvement

● Plus it’s 2021… it’s about time we not only talk about inclusiveness, but act on it

Where can
you start?

Learn about accessibility
(a11y)

www.a11yproject.com

-> great resources & checklist

https://www.a11yproject.com/

Color contrast checkers

Stark - Figma, Sketch, Adobe XD

A11y - Color Contrast Checker - Figma

Cluse - Sketch

Color blindness simulators

Able – Friction free accessibility - Figma

Stark - Figma, Sketch, Adobe XD

Free tools for designers

https://www.getstark.co/
https://www.figma.com/community/plugin/733159460536249875/A11y---Color-Contrast-Checker
https://cluse.cc/
https://www.figma.com/community/plugin/734693888346260052/Able-%E2%80%93-Friction-free-accessibility
https://www.getstark.co/

Browser tools

Firefox Accessibility Tool - all in one tool
● color blindness simulator
● color contrast checker - use as inspect or

entire page
● audit for contrast, keyboard navigation and

text label issues
● shows tabs order for navigation

Google Lighthouse - runs like an audit

https://developer.mozilla.org/en-US/docs/Tools/Accessibility_inspector
https://developers.google.com/web/tools/lighthouse

Other tools

Wave - a11y evaluation tool. Chrome &

Firefox extensions

Color blindness simulator

Colorblindly - extension

Cobis - online tool

Color contrast checker

Colour Contrast Checker - extension & online

tool

Coolors - extension & online tool

https://wave.webaim.org/extension/
https://github.com/oftheheadland/Colorblindly
https://www.color-blindness.com/coblis-color-blindness-simulator/
https://colourcontrast.cc/
https://coolors.co/contrast-checker/ffffff-1d6abc

Supportive assistive technology

● Orca (Linux/Gnome)

● Emacspeak (Linux)
● VoiceOver (Mac OS X)

● JAWS (Windows)

● NVDA (Windows)

● Dolphin Supernova (Windows)

● ZoomText (Windows)

Why don’t you try it
yourself?

Close your eyes and try to
send an email using a
screen reader. Don’t cheat!

https://help.gnome.org/users/orca/stable/
http://emacspeak.sourceforge.net/
http://www.apple.com/accessibility/voiceover/
http://www.freedomscientific.com/products/fs/jaws-product-page.asp
http://www.nvda-project.org/
https://yourdolphin.com/supernova-magnifier-screen-reader
http://www.aisquared.com/zoomtext

Automated testing with Pa11y

Pa11y runs accessibility tests on your
pages via the command line or Node.js,
so you can automate your testing
process.

With Pa11y you can define routes to be
tested, and be able to take screenshots
of those routes through actions which
help you go through the app.

FOSS - LGPL-3.0 licensed

https://pa11y.org/

Overwhelming
right?

Let’s break it into pieces

Use one of the tools
presented to see where your
project stands today

Audit your project

Write down all important or
repetitive issues

Identify main issues

Give each a rough time or
effort estimate

Estimate time/effort

Be it a roadmap, prioritization
matrix or anything that works
for you

Create a plan

Go after the low hanging fruit.
What’s the easiest fix you can
do?

Start small

- test your GUI with them
- invite them to open

accessibility related tickets

+ Involve community

01 02 03

04 05 06

HTML Color Blindness Color Contrast Tab Navigation

1 Error*Easystart V2 OK Unusable
Can’t select integrations, can’t scroll.

5 Errors*
50 Alerts

Integrations
Management OK

6 Errors*
1 Alert

Synthetic
Monitoring
(setup)

Ok
Hardly usable
Can create a check. Can’t use probes or
config.

16 Errors
4 AlertsAlerting UI OK 2 Issues

Somewhat usable
Can create rules, but can’t edit as the
button is skipped. Can create silences.

I recently tested the projects I was working

OK

OK* Unusable
Can’t select integrations.

OK

7 Errors
9 Alerts

Loki
(querying logs
in explore)

OK 5 Issues
Unusable
Tab gets stuck in query input. Can’t see half
of selection items.

● Navigation:

○ impossible to use the app with keyboard only

○ impossible to use the app with screen readers

● Structural elements:

○ page headings levels are sometimes skipped - used to facilitate keyboard navigation by users of
assistive technology

○ missing page regions or ARIA landmarks - used to identify significant page areas
● Forms (design system related):

○ using empty form labels for on/off switches
○ missing fieldset for button-groups
○ missing form labels

● Color contrast:

○ code highlight issues - red on black has too low contrast

Main issues

Small issues:

● Define ARIA landmarks ~ 2 days / feature

● Open Github issues for form elements related to the design system. Assign it to yourself if you can fix it
and you have time

● Make sure we use labels for all dropdowns, button-groups, etc or that we have appropriate aria-labels ~ 1
day / feature

● Use proper level headings ~ 1 day / feature

Fixes everywhere

We can fix them in under a week!

Fixes everywhere

Make it accessible by keyboard

● Visibility of the focus indicator
Users need to be able to easily distinguish the keyboard focus indicator from other features of the visual design.

● Persistence of focus
It is essential that there is always a component within the user interface that is active.
Ex: if the user closes a dialog the active element may be hidden or removed from the DOM. In this case the active/focus element
should be on the button that triggered that dialog window.

● Predictability of movement
Usability of a keyboard interface is heavily influenced by how readily users can guess where focus will land after a navigation key is
pressed.

● Avoiding keyboard traps
TAB takes you forward to the next focusable item and that SHIFT+TAB takes you backwards.
Ex: client-side form validation that forces users back into the incomplete field, preventing them from moving on the next field.

● Bypass Blocks
Provide a ‘Skip to Content’ link (ex: skip sidebar menu)

~ 1 week - 2 months, depending on the feature/area

https://www.w3.org/TR/wai-aria-practices-1.2/#kbd_focus_discernable_predictable

Final steps

Test with pa11y, our
own keyboards and

voiceover tools

Get feedback from
community on the

changes

Keep learning, keep fixing and
write semantic HTML!

Thank you!
Let’s take some questions.

@Caelea

