
Beyond
Swapping Bits
Accelerating file-sharing in
P2P networks and
IPFS with Bitswap

Alfonso de la Rocha
Research Engineer
ResNetLab (alfonso.rocha@protocol.ai)

 @adlrocha
 adlrocha.substack.com

File exchange in P2P
networks is hard! 😱

- Content discovery, resolution and delivery.

- Without any central point of coordination.

- A gamut of content routing systems helping in this

quest:
- Bittorrent: Trackers
- Web 2.0: DNS
- P2P networks: DHT (slow 🐢)

Bitswap

Bitswap message-oriented
protocol that helps content
routing subsystems to
overcome their trade-offs.

- IPFS’ exchange interface

- Filecoin’s block synchronization

Content in Bitswap 🗃

- Content is chunked in blocks

- Blocks are uniquely identified by a

Content IDentifier (CID, i.e. hash of the

block)

- Structured as a DAG (link of blocks)

File

..CID1 CID2 CID3

Request Patterns

Level 1

Level 2

Level 3

Request all nodes at each
level of a DAG (eg a file)

web

web/page

web/page/doc.html

Request nodes down a DAG
(eg web/page/doc.html)

<contents>

IPFS requests blocks from Bitswap. Two common request patterns:

Fetching files ⬇

Bitswap is the exchange interface

in IPFS

IPFS calls Bitswap to gather files

from the network

- Requests: WANT-HAVE /

WANT BLOCK / CANCEL

- Responses: HAVE / BLOCK /

DONT_HAVE

IPFS

Blockstore

Bitswap

Bitswap - Discovery

- Broadcast WANT to connected

Peers

- If there’s no response, ask DHT

who has root CID
WANT
CID1

WANT
CID1

WANT
CID1

Providers CID1

DHTConnected Peers

Discovery - Sessions

- Peers who respond are added to

the Session
- Subsequent requests are sent

only to peers in the session

Block
(CID1)

Block
(CID1)

Provider CID1

DHTConnected Peers

Discovery - Wantlists

- Nodes send WANT messages to peers

- Each node remembers the want list for

each of its peers

- The wantlist is discarded when the peer

disconnects

WANT
CID1

1
WANT
CID2

1 2

Block
(CID1)

1 2

Block
(CID1)

Peer A Peer B

Peer B
remembers
Peer A’s
wantlist

Peer B
receives
Block (CID1)

Peer B
removes
CID1 from
wantlist for
Peer A

A

A

A

Peer B sends
Block (CID1)
to Peer A

Discovery - Transfer
Roundtrip

- HAVE message
- Sometimes we don’t want a whole

block
- We just want to know who has a

block (eg for discovery)

- Two kinds of WANT message
- want-have
- want-block

- If the block is small enough, send

the whole block (instead of sending

HAVE)

want-have CID1?

Peer A Peer B Peer C Peer D

HAVE CID1 ✓

want-block CID1 ▫

Block (CID1) ▧

HAVE CID1 ✓
HAVE CID1 ✓

Discovery:
Ask who has
CID1

Peer B has
CID1

Request block
from Peer B

Peer C & D
have CID1

Peer B sends
block

- DONT_HAVE message
- Allows peer to indicate that it does NOT have a

block
- Requestor can set a flag to tell responder to

send DONT_HAVE in response to want-block
or want-have

- Requests:
- want-block
- want-have

- Respond with combination of
- HAVE
- DONT_HAVE
- block

Peer A Peer B Peer C Peer D

Peer A sends
either
- want-block ▫
- want-have ?
for each CID
that it wants

▫▫▫?
????

???▫
▫▫??

????
??▫▫

▧▧✗✓

✓✓✗✓

✗✓✓▧

▧▧✓✓

✗✓✓▧

▧▧✓✓

Peers B, C & D
respond with
- Block ▧
- HAVE ✓
- DONT_HAVE ✗
for each CID

Discovery - WANT-HAVE
BROADCAST

Wantlists - Cancel

- When a node receives a block it wanted,

it sends a CANCEL message to all peers

it has requested the block from

WANT
CID1

1
WANT
CID2

1 2

Block
(CID1)

1 2

CANCEL
CID1

Peer A Peer B

Peer B
remembers
Peer A’s
wantlist

Peer A sends
CANCEL CID1
to Peer B

Peer B
removes
CID1 from
wantlist for
Peer A

A

A

A

Peer A receives
Block (CID1)

Bitswap v.s. DHT

Bitswap Issues ⚠ and
Beyond Swapping Bits
🐇

- Current “one-size-fits all” implementation may not suit every use case.
- No way to configure the protocol to fit the client’s needs.

- Blind and deterministic search.
- We don’t use a priori information of the protocol (or other protocols) when se

start the discovery.

- “Dumb” requests:
- Split requests and use multiple non-overlapping transfer streams
- Use selectors and queries to discover full DAG sections and request their

transfer.

- More efficient use of bandwidth.

Ongoing work: https://github.com/protocol/beyond-bitswap

https://github.com/protocol/beyond-bitswap

Beyond
Swapping Bits 🐇

Compression
in Bitswap 📦

https://research.protocol.ai/blog/2020/honey

-i-shrunk-our-libp2p-streams/

- Up to 75% on bandwidth

savings

https://research.protocol.ai/blog/2020/honey-i-shrunk-our-libp2p-streams/
https://research.protocol.ai/blog/2020/honey-i-shrunk-our-libp2p-streams/

WANT message
inspection 🔬

https://research.protocol.ai/blog/2020/two-e

ars-one-mouth-how-to-leverage-bitswap-chat

ter-for-faster-transfers/

Nodes requesting blocks will

potentially have it in the future

Inspect WANT messages

received to direct subsequent

discoveries for content.

https://research.protocol.ai/blog/2020/two-ears-one-mouth-how-to-leverage-bitswap-chatter-for-faster-transfers/
https://research.protocol.ai/blog/2020/two-ears-one-mouth-how-to-leverage-bitswap-chatter-for-faster-transfers/
https://research.protocol.ai/blog/2020/two-ears-one-mouth-how-to-leverage-bitswap-chatter-for-faster-transfers/

WANT message
inspection 🔬

https://research.protocol.ai/blog/2020/two-e

ars-one-mouth-how-to-leverage-bitswap-chat

ter-for-faster-transfers/

Nodes requesting blocks will

potentially have it in the future

Inspect WANT messages

received to direct subsequent

discoveries for content.

https://research.protocol.ai/blog/2020/two-ears-one-mouth-how-to-leverage-bitswap-chatter-for-faster-transfers/
https://research.protocol.ai/blog/2020/two-ears-one-mouth-how-to-leverage-bitswap-chatter-for-faster-transfers/
https://research.protocol.ai/blog/2020/two-ears-one-mouth-how-to-leverage-bitswap-chatter-for-faster-transfers/

Jumping Bitswap 🐒

https://research.protocol.ai/blog/2020/teachi

ng-bitswap-nodes-to-jump/

Increase range of discovery of

Bitswap without resorting to

providing subsystem.

https://research.protocol.ai/blog/2020/teaching-bitswap-nodes-to-jump/
https://research.protocol.ai/blog/2020/teaching-bitswap-nodes-to-jump/

Juming Bitswap 🐒

Ongoing Research 🥽
● RFCs with potential improvements.

● Research and development teams building prototypes for the RFC and coming up with new ones.

Ongoing Research 🥽
● RFCs with potential improvements.

● Research and development teams building prototypes for the RFC and coming up with new ones.

Help us make file-sharing in P2P
networks blazing fast! 🏎
https://github.com/protocol/beyond-bitswap

https://github.com/protocol/beyond-bitswap

Questions?

Alfonso de la Rocha
Research Engineer
ResNetLab (alfonso.rocha@protocol.ai)

 @adlrocha
 adlrocha.substack.com

We ❤ Feedback
Reach out if you want to contribute to the work!
Join the discussion!

Beyond
Swapping Bits
Accelerating file-sharing in
P2P networks and
IPFS with Bitswap

Alfonso de la Rocha
Research Engineer
ResNetLab (alfonso.rocha@protocol.ai)

 @adlrocha
 adlrocha.substack.com

