

Beyond Swapping Bits

Accelerating file-sharing in P2P networks and IPFS with Bitswap

Alfonso de la Rocha

Research Engineer ResNetLab (alfonso.rocha@protocol.ai)

@adlrocha <u>adlro</u>cha.substack.com

File exchange in P2P networks is hard!

- Content discovery, resolution and delivery.
- Without any central point of coordination.
- A gamut of content routing systems helping in this quest:
 - Bittorrent: Trackers
 - Web 2.0: DNS
 - P2P networks: DHT (slow 🐆)

Bitswap

Bitswap message-oriented protocol that helps content routing subsystems to overcome their trade-offs.

- IPFS' exchange interface
- Filecoin's block synchronization

- Content is chunked in blocks
- Blocks are uniquely identified by a **Content IDentifier (CID**, i.e. hash of the block)
- Structured as a DAG (link of blocks)

Request Patterns

IPFS requests blocks from Bitswap. Two common request patterns:

Request nodes down a DAG (eg web/page/doc.html)

<contents>

Fetching files 🤳

Bitswap is the exchange interface in IPFS

IPFS calls Bitswap to gather files from the network

- Requests: WANT-HAVE / WANT BLOCK / CANCEL
- Responses: HAVE / BLOCK / DONT_HAVE

Bitswap - Discovery

- Broadcast WANT to connected Peers
- If there's no response, ask DHT who has root CID

Discovery - Sessions

- Peers who respond are added to the **Session**
- Subsequent requests are sent only to peers in the session

Discovery - Wantlists

- Nodes send WANT messages to peers
- Each node **remembers the want list** for each of its peers
- The wantlist is discarded when the peer disconnects

Discovery - Transfer Roundtrip

- HAVE message
 - Sometimes we don't want a whole block
 - We just want to know who has a block (eg for discovery)
- Two kinds of WANT message
 - want-have
 - want-block
- If the block is small enough, send the whole block (instead of sending HAVE)

Discovery - WANT-HAVE BROADCAST

- DONT_HAVE message
 - Allows peer to indicate that it does NOT have a block
 - Requestor can set a flag to tell responder to send DONT_HAVE in response to want-block or want-have
- Requests:
 - want-block
 - want-have
- Respond with combination of
 - HAVE
 - DONT_HAVE
 - block

Wantlists - Cancel

- When a node receives a block it wanted, it sends a CANCEL message to all peers it has requested the block from

Bitswap v.s. DHT

30

Bitswap Issues <u>i</u> and Beyond Swapping Bits

- Current **"one-size-fits all" implementation** may not suit every use case.
 - No way to configure the protocol to fit the client's needs.
- Blind and deterministic search.
 - We don't use a priori information of the protocol (or other protocols) when se start the discovery.
- "Dumb" requests:
 - Split requests and use multiple non-overlapping transfer streams
 - Use selectors and queries to discover full DAG sections and request their transfer.
- More efficient use of bandwidth.

Ongoing work: <u>https://github.com/protocol/beyond-bitswap</u>

Beyond Swapping Bits

Compression in Bitswap 🌾

- Up to 75% on bandwidth savings

-i-shrunk-our-libp2p-streams/

WANT message inspection

Nodes requesting blocks will potentially have it in the future

Inspect WANT messages received to direct subsequent discoveries for content.

https://research.protocol.ai/blog/2020/two-e ars-one-mouth-how-to-leverage-bitswap-chat ter-for-faster-transfers/

WANT message inspection

Nodes requesting blocks will potentially have it in the future

Inspect WANT messages received to direct subsequent discoveries for content.

https://research.protocol.ai/blog/2020/two-e ars-one-mouth-how-to-leverage-bitswap-chat ter-for-faster-transfers/

Increase range of discovery of Bitswap without resorting to providing subsystem.

https://research.protocol.ai/blog/2020/teachi

ng-bitswap-nodes-to-jump/

Ongoing Research

- RFCs with potential improvements.
- Research and development teams building prototypes for the RFC and coming up with new ones.

Ongoing Research 🐋

- RFCs with potential improvements.
- Research and development teams building prototypes for the RFC and coming up with new ones.

Questions?

Reach out if you want to contribute to the work! Join the discussion!

Alfonso de la Rocha Research Engineer ResNetLab (alfonso.rocha@protocol.ai)

@adlrocha adlrocha.substack.com

Beyond Swapping Bits

Accelerating file-sharing in P2P networks and IPFS with Bitswap

Alfonso de la Rocha

Research Engineer ResNetLab (alfonso.rocha@protocol.ai)

@adlrocha <u>adlro</u>cha.substack.com

