e e e
i
— 1 1 D
”I
. \V
[b \ i
_ . O
n
= S ¢
I —)
i Ara il =1
W — © O
M/— —
e . = 0 Q2
g 1
0T &
b S N 2L o
- @E= mn N
c @ SRS
- G-
) o © Bl
) ® =]
= ¥
| +) o [

blnl'

L= =

Ignin
W@Jﬂg

epte

C
\

Desi

\.._.\\... |

- i oy e

J NS
N/ L/ AN

{ / UM VY

Introduction

Jens Finkhauser (Finkhaeuser)
30+ years since “hello, world” (C64)
20+ years since paid “hellewerd” real software

Dial-up modems, 1200 Baud (still hear the sound)
BBSes before Internet/Web
PHP - Python - C/C++

Fullstack — Backend/Libraries - Network protocols

Introduction

 From 2006: Video on Demand streaming over
P2P network at Joost

- Netflix started VoD 2007

 March 2008: Live streaming “March Madness”
college basketball over P2P network

- DLive “world’s first decentralized live streaming protocol”
announced at BitTorrentX 2020-12-21

https://medium.com/@BitTorrent/launch-of-new-dlive-protocol-announced-at-bittorrentx-product-release-conference-
fb8b7d9f5308

Introduction

early 2019: worked with Blockchain startup on
(live) video over decentralized networks

— too much Blockchain focus

Looked for funding

Grant from NLNet confirmed Dec. 2019
2020 pandemic, lockdown :(

Mid-2020: joined AnyWi Technologies B.V. :)

https://ninet.nl/ https://www.ngi.eu/ngi-projects/ngi-zero/

https://nlnet.nl/
https://www.ngi.eu/ngi-projects/ngi-zero/

Related Work

Anyw.

TECHNOLOGIES

https://www.anywi.com/

.
»

COMP4DRONES ADACORSA

https://comp4drones.eu/ https://adacorsa.eu/

https://comp4drones.eu/
https://adacorsa.eu/
https://www.anywi.com/

ad.

The Web Is

AN

N

X))

Al

—
"

—
il

e

ad.

n
1 + | £ =
D SE]

1S
& i AY
(it witl- stay undead tor quite some; time)

The

AN

.‘\'\,\

NV]

Al

—
"

—

e

Web Timeline

1991 - HTTP/0.9

| SSL 1.0/2.0 - 1994
1907 - HTTPILA 1996 - HTTP/1.0 SSL 3.0 - 1996

1999 - HTTP/1.1 HTTP Auth + TLS 1.0 - 1999
EEEEEEENEEEENEENER 2003_Web2.0 lIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

TLS 1.1 - 2006
2008 - HTML5 TLS 1.2 - 2008 OAuth 1.0 - 2007
- OAUtH 2.0 - 2012

Web Eras

 From 1991 Early Web: Simplicity
- Establish HTTP as a decentralized protocol
- Add some basic security features

e ca. 2003 Web 2.0: Get everyone online
— Pull users to centralized providers instead of everyone running their own
- Authentication/authorization more important
- 2006: start HTMLS5, “Working Draft” in 2008
e ca. 2013 Docker: containerization, microservices, RESTish APIs
- Feedback loop: consolidation - scale — complexity — consolidation

Web Protocol Issues

Security has always been an afterthought
Privacy never even a topic

Commercial interests, not user interests determine innovation
areas

HTTP/2 effectively Google’s SPDY
HTTP/3 effectively Google’'s QUIC

Web Protocol Issues

HTTP is and isn’'t CRUD (Create, Read, Update, Destroy) \/ |
— Conceptually a resource store access protocol/methods map to similar functionality ‘
- POST and PATCH have media type/resource specific interpretation

GET Range headers not always supported, PATCH under-
specified - inefficient at finer resolution than “entire resource”

Unlike all (?) prior CRUD systems, HTTP forgoes resource ownership and
access rights

- Left to server implementation/application aka unspecified

Must lead to server “owning” data

HTML Issues

XHMTL 2.0 vs. HTMLS5 start in 2006
“Living Standard” since 2012 with W3C/WHATWG split
WebKit as best funded engine standards driver for a long time

2020: Mozilla abandons own engine

Google de facto owns HTML5 via WebKit
- React? Typescript?

HTML Issues

HTML historically mixes data and representation.

- XHTML tried to fix, HTML5 “fixes” by leaving custom tag semantics
unspecified

With JavaScript, also mixes processing

- What about MVC (MVP, MVVM)?

Worse: separation possible, but linking/embedding CSS+JS Is
simpler
Must lead to “data silos”, only accessible via linked View/Controller

Strengths

- Early simplicity (though long term weakness)

— Server-side processing (though also weakness)
* Merges API and resource store concepts

 HTML
- Simplicity with getting started (though long term weakness)

Strengths

- Earlythough long term weakness)

— Server-side processing (though also weakness)
* Merges API and resource store concepts

* HTML

— With getting started (though long term weakness)

?

4

So: Whithe

\\\\\... [

= 8
SN

= SN

foNm > ARRLN

—
"
P
-
—
™|
|
—
—
s
"
—

Censorship

~ Eric Weinstein &
@EricRWeinstein

Replying to @EricRWeinstein

Level O: This is an attack on free speech in the
public square.

Level 1 rejection: This is not the public square
but a matter of for profit companies and the
freedom to do what they please.

Level 2: Level 1 only works if there is a public
sector of the internet for all to use.

3:53am - 10 Jan 2021 - Twitter for iPhone

Centralization as Default

€ moxied commented on May 6, 2016

| don't think that the several LibreSignal users
are a big impact on the server. Anyway, since
you rely on donations, what is the difference
for you if the user is using Signal-Android or
another Signal fork?

Not my highlight

The difference is huge; one we have control over,
the other we dontt. | /

Even less of a place for an
organization the =™of ours. Everyone outside the
FOSS community seems to know it, but it took
actually building the service for me to come to the
same understanding, so | don't expect you to
believe me.

Open
exchange

There’s an«,, mat
For That

The internet interprets censorship as damage and routes

around it.
— John Gilmour

C

\\\\\... [

= 8
SN

5= SN

foNm > ARRLN

=
"
P
-
—
™|
|
—
—
=8
"
—

Mechanics of Collaboration

Communication

Sharing stuff
- Give, receive digital assets
- More “trade” than social media

Sharing skills (aka working together on stuff)
- Update parts of a resource
- Selling services

This Is *human centric”, humans collaborate

Mechanics of Collaboration

Real-time

e Communication —

* Sharing stuff T Access control,

_ _ . . .— ownership
- Give, receive digital assets

- More “trade” than social media

* Sharing skills (aka working together on stuff)

— Update parts of a resource - Finer resolution than

: : entire resource
- Selling services
\

Server-side
processing?

What is Real-Time?

Consume data while it is in the process of being produced
Produce, consume in chunks

- Finer resolution than “entire resource”

Indeterminate size of data (at outset)

Data streaming

- Video streaming makes a great use-case: it’s high bandwidth, and
has low latency requirements.

Requirements of Collaboration

Solution
Data streaming Something other than HTTP

Access control E2E Encryption (shared symmetric key)
Ownership Encryption (private key)
Server-side processing Remote APIs

No man in the middle required/wanted Something other than HTTP

, O

2VIC

&

Data Loca

MAAN

X))
%

f)’
,.# 21
| =T

\\

N
Al

B
Y
Vel
e
—
X

Data Locality

e Web is client/server
— Data resides at central location
— Allows for multiple remote clients

* Multiple personal devices, each with own storage

* |loT/Smart Sensors
- Data is collected and resides (temporarily?) in hundreds of locations

- |oT connectivity (BLE, LoRa) may not make IoT device ideally
suitable for “client” role

Data Locality & Devices
 Web is client/server
- Data resides at central location Smooth

- Allows for multiple remote clieny handover
* Multiple personal devices _
ultiple link technologies (WiFi,) synchronization
— each with own storage
* loT/Smart Sensors
- Data is collected and resides (temporarily?) in hundreds of locations
- 10T connectivity (BLE, LoRa) may not make 10T device ideally suitable for “client” role

\

Heterogeneous link technologies,
no strict client/server

Data streaming

| Access control

Ownership
Server-side processing
No man in the middle required/wanted

Smooth handover

Selective synchronization
Heterogeneous link technologies
No strict client/server

Solution

Something other than HTTP

E2E Encryption (shared symmetric key)
Encryption (private key)

Remote APIs

Something other than HTTP
Multi-home/-path/-link

PubSub of resources

Overlay network

P2P

Drones

AN

—
H":..\\ P d\

X))
%

,)f
e
-

A\

N
Rl

—
"
P
-
—
™|
|
—
—
s
"
—

* Beyond Visual Line of Sight
- aka no toys
— also non-military (with “unlimited” budget)

 EASA requirements: reliable Command, Control &

Communications (C3) links

* Reliable C3 Links for UAS (paper preprint)

https://www.researchgate.net/publication/347522757_Reliable_Command_Control_and_Communication_Links_for_Unmanned_Aircraft_Systems

Data streaming
| Aeeess-eontrel Tamper-proofing
| Ownership Identification
E o :
No man in the middle required/wanted
Smooth handover
Heterogeneous link technologies
No strict client/server

Solution

Something other than HTTP

E2E Encryption (shared symmetric key)
Encryption (private key)

Remeoete-APts

Something other than HTTP
Multi-home/-path/-link
PubSub-efreseurees

Overlay network

P2P

(quick summary)

u\n..llu M

] iy

o .fr“.r////./.
o NN,

DA

TRYIPaYGRIRIRET

Requirements of Collaboration

”

Solution
Data streaming Something other than HTTP
| Access control E2E Encryption (shared symmetric key)
Ownership Encryption (private key)
Server-side processing Remote APIs
No man in the middle required/wanted Something other than HTTP
Smooth handover Multi-home/-path/-link
Selective synchronization PubSub of resources
Heterogeneous link technologies Overlay network
No strict client/server P2P
Ease of adoption Simplicity in usage

Human Centric

“Our” data will live on many devices
- But be safe from malicious access

We can access our data anytime, in part (fast) or in full (potentially slow,
requires full sync)

We can access our data from any device, including not our own
(requires private key)

We can share and collaborate on our data

We can selectively allow access to our data from processing nodes
— e.g. devices such as Printers

Infrastructure

Web'’s focus on “Server” functionality aka application pushes
web solutions to the “application” level of the OSI stack

Internet '= web

- Internet is infrastructure, ubiquitous, doesn’t care about specific
applications

Need infrastructure protocols, not more application
frameworks

Peer-to-peer
e Peer as in host: no distinct client or server role - shifts

responsibility to host owner

* Peer as In person: host-oriented is foundation for person-
oriented (human centric) networking

@

\\\\\... [

= 8
SN

= SN

foNm > ARRLN

—
"
P
-
—
™|
|
—
—
s
"
—

Liberate

https://gitlab.com/interpeer/liberate/

“small platform liberation library” — minimal platform
abstractions

C++
Linux, FreeBSD (other BSD?), OS X, Windows, Android, (I0S?)

https://gitlab.com/interpeer/liberate/

Packeteer

https://gitlab.com/interpeer/packeteer/

simplified, asynchronous, event-based socket API.

C++

Linux, FreeBSD (other BSD?), OS X, Windows, Android, (iI0S?)

Focus different from other projects: Cross platform (highest
priority), low usage complexity, stable API/ABI, packet
oriented 1/O friendly, scalable, efficient, extensible (lowest

priority)

https://gitlab.com/interpeer/packeteer/

Packeteer

Windows port works, but has bugs
- Probably wants a partial re-write

Some refactoring of POSIX code required

No scatter/gather I/O yet

Some tweaks, extensions

Semi-modern C++ (focus on library != templates)

Highly WIP
Multi-channel, packet-oriented protocol
— Channels as in HTTP/3, should allow for efficiency multiplexing various streams

Ready for protocol extensions such as encryption
— Encryption based on WireGuard/NOISE, with extra handshake

Provisions for multi-link

Future: channel-specific tuning of reliability
- FEC, resends, SCTP-like reliability without strict ordering

UDP-based, but could be on IP or Ethernet

Part of ADACORSA
Abstract protocol, focus on messages and state machines
Paper being written alongside, hopefully published in mid-2021

Multi-link in Channeler will follow this pattern

AN

|

:":..\\ P d\

N

Rl

NV]

\

=

—
"

e
~——

il
]

Previous should provide for stable P2P links

Need a distributed hash table

- Kademlia is good, but needs tweaks to exploit network infrastructure
better

Need a streaming protocol over stable links, something akin to
PPSPP https://tools.ietf.org/html/rfc7574

Distributed filesystem(-like) as best API for simple, safe,
distributed applications?

https://tools.ietf.org/html/rfc7574

\\\\\... [

= 8
SN

5= SN

foNm > ARRLN

=
"
P
-
—
™|
|
—
—
=8
"
—

Contributing

Design identity & guides
Website & documentation templates
Any protocol feedback! Any feedback!

Relatively financed for the next few years
— Not set up for donations yet, but intend to
— Would be good to hire a few developers & staff

- Fundraising experience? Yes please!

1 \J

TN

https://interpeer.ic

ens@interpeer.io

Questions?

< ~ul W N L J N L 7

https://reset.substack.

AN

N

NV]

Al

—
"

—

e

https://interpeer.io/
mailto:jens@interpeer.io
https://reset.substack.com/

NOYBOE

(”ln‘i

=4

P
=l ON=
S 03
S @ O
g 0%
\
(II_C
- 9
vn%
S = =
g & |
- C 0 |
O =
Ccs
===
_nUr_m — |
d.-
- 9
- -
SR B
N SN
S
C\I._lll_.
e e =
— (N O
12PN
vms
=)
mn 7))
>0 o
7
o 2 |©
==
—

AN

N

NV]

Al

—
"

—

e

