

Designing a Human Centric
Next Generation Internet

FOSDEM ‘21
Collaborative Information and

Content Management Applications devroom

Introduction

● Jens Finkhäuser (Finkhaeuser)
● 30+ years since “hello, world” (C64)
● 20+ years since paid “hello, world” real software
● Dial-up modems, 1200 Baud (still hear the sound)
● BBSes before Internet/Web
● PHP → Python → C/C++
● Fullstack → Backend/Libraries → Network protocols

Introduction

● From 2006: Video on Demand streaming over
P2P network at Joost
– Netflix started VoD 2007

● March 2008: Live streaming “March Madness”
college basketball over P2P network
– DLive “world’s first decentralized live streaming protocol”

announced at BitTorrentX 2020-12-21
https://medium.com/@BitTorrent/launch-of-new-dlive-protocol-announced-at-bittorrentx-product-release-conference-
fb8b7d9f5308

Introduction

● early 2019: worked with Blockchain startup on
(live) video over decentralized networks
– too much Blockchain focus

● Looked for funding
● Grant from NLNet confirmed Dec. 2019
● 2020 pandemic, lockdown :(
● Mid-2020: joined AnyWi Technologies B.V. :)

https://nlnet.nl/
https://www.ngi.eu/ngi-projects/ngi-zero/

https://comp4drones.eu/
https://adacorsa.eu/
https://www.anywi.com/

The Web is dead.

The Web is dead.
(it will stay undead for quite some time)

Web Timeline
1991 - HTTP/0.9

1996 - HTTP/1.0
1997 - HTTP/1.1

1999 - HTTP/1.1 HTTP Auth + TLS 1.0 - 1999

SSL 1.0/2.0 - 1994
SSL 3.0 - 1996

TLS 1.1 - 2006
TLS 1.2 - 2008

TLS 1.3 - 2018

2015 - HTTP/2

OAuth 1.0 - 2007

OAuth 2.0 - 2012???? - HTTP/3

2003 - Web 2.0

2013 - Docker

2008 - HTML5

Web Eras

● From 1991 Early Web: Simplicity
– Establish HTTP as a decentralized protocol
– Add some basic security features

● ca. 2003 Web 2.0: Get everyone online
– Pull users to centralized providers instead of everyone running their own
– Authentication/authorization more important
– 2006: start HTML5, “Working Draft” in 2008

● ca. 2013 Docker: containerization, microservices, RESTish APIs
– Feedback loop: consolidation → scale → complexity → consolidation

Web Protocol Issues

● Security has always been an afterthought
● Privacy never even a topic
● Commercial interests, not user interests determine innovation

areas
● HTTP/2 effectively Google’s SPDY
● HTTP/3 effectively Google’s QUIC

Web Protocol Issues

● HTTP is and isn’t CRUD (Create, Read, Update, Destroy)
– Conceptually a resource store access protocol/methods map to similar functionality
– POST and PATCH have media type/resource specific interpretation

● GET Range headers not always supported, PATCH under-
specified → inefficient at finer resolution than “entire resource”

● Unlike all (?) prior CRUD systems, HTTP forgoes resource ownership and
access rights
– Left to server implementation/application aka unspecified

● Must lead to server “owning” data

HTML Issues

● XHMTL 2.0 vs. HTML5 start in 2006
● “Living Standard” since 2012 with W3C/WHATWG split
● WebKit as best funded engine standards driver for a long time
● 2020: Mozilla abandons own engine
● Google de facto owns HTML5 via WebKit

– React? Typescript?

HTML Issues

● HTML historically mixes data and representation.
– XHTML tried to fix, HTML5 “fixes” by leaving custom tag semantics

unspecified

● With JavaScript, also mixes processing
– What about MVC (MVP, MVVM)?

● Worse: separation possible, but linking/embedding CSS+JS is
simpler

● Must lead to “data silos”, only accessible via linked View/Controller

Strengths

● HTTP
– Early simplicity (though long term weakness)
– Server-side processing (though also weakness)

● Merges API and resource store concepts

● HTML
– Simplicity with getting started (though long term weakness)

Strengths

● HTTP
– Early simplicity (though long term weakness)
– Server-side processing (though also weakness)

● Merges API and resource store concepts

● HTML
– Simplicity with getting started (though long term weakness)

So: Whither Web?

Censorship

Centralization as Default

Not my highlight

The internet interprets censorship as damage and routes
around it.

– John Gilmour

My TEDFOSDEM talk

Collaboration

Mechanics of Collaboration

● Communication
● Sharing stuff

– Give, receive digital assets
– More “trade” than social media

● Sharing skills (aka working together on stuff)
– Update parts of a resource
– Selling services

● This is “human centric”, humans collaborate

Mechanics of Collaboration

● Communication
● Sharing stuff

– Give, receive digital assets
– More “trade” than social media

● Sharing skills (aka working together on stuff)
– Update parts of a resource
– Selling services

Real-time

Access control,
ownership

Finer resolution than
entire resource

Server-side
processing?

What is Real-Time?

● Consume data while it is in the process of being produced
● Produce, consume in chunks

– Finer resolution than “entire resource”

● Indeterminate size of data (at outset)
● Data streaming

– Video streaming makes a great use-case: it’s high bandwidth, and
has low latency requirements.

Requirements of Collaboration

Requirement Solution

Data streaming Something other than HTTP

Access control E2E Encryption (shared symmetric key)

Ownership Encryption (private key)

Server-side processing Remote APIs

No man in the middle required/wanted Something other than HTTP

Data Locality & Devices

Data Locality

● Web is client/server
– Data resides at central location
– Allows for multiple remote clients

● Multiple personal devices, each with own storage
● IoT/Smart Sensors

– Data is collected and resides (temporarily?) in hundreds of locations
– IoT connectivity (BLE, LoRa) may not make IoT device ideally

suitable for “client” role

Data Locality & Devices

● Web is client/server
– Data resides at central location
– Allows for multiple remote clients

● Multiple personal devices
– Multiple link technologies (WiFi, LTE)
– each with own storage

● IoT/Smart Sensors
– Data is collected and resides (temporarily?) in hundreds of locations
– IoT connectivity (BLE, LoRa) may not make IoT device ideally suitable for “client” role

Selective
synchronization

Heterogeneous link technologies,
no strict client/server

Smooth
handover

Requirements of Collaboration

Requirement Solution

Data streaming Something other than HTTP

Access control E2E Encryption (shared symmetric key)

Ownership Encryption (private key)

Server-side processing Remote APIs

No man in the middle required/wanted Something other than HTTP

Smooth handover Multi-home/-path/-link

Selective synchronization PubSub of resources

Heterogeneous link technologies Overlay network

No strict client/server P2P

Drones

BVLOS

● Beyond Visual Line of Sight
– aka no toys
– also non-military (with “unlimited” budget)

● EASA requirements: reliable Command, Control &
Communications (C3) links

● Reliable C3 Links for UAS (paper preprint)

https://www.researchgate.net/publication/347522757_Reliable_Command_Control_and_Communication_Links_for_Unmanned_Aircraft_Systems

C3 Link Handover

PH-ONE

Requirements of Reliable C3 Links

Requirement Solution

Data streaming Something other than HTTP

Access control Tamper-proofing E2E Encryption (shared symmetric key)

Ownership Identification Encryption (private key)

Server-side processing Remote APIs

No man in the middle required/wanted Something other than HTTP

Smooth handover Multi-home/-path/-link

Selective synchronization PubSub of resources

Heterogeneous link technologies Overlay network

No strict client/server P2P

Vision
(quick summary)

Requirements of Collaboration

Requirement Solution

Data streaming Something other than HTTP

Access control E2E Encryption (shared symmetric key)

Ownership Encryption (private key)

Server-side processing Remote APIs

No man in the middle required/wanted Something other than HTTP

Smooth handover Multi-home/-path/-link

Selective synchronization PubSub of resources

Heterogeneous link technologies Overlay network

No strict client/server P2P

Ease of adoption Simplicity in usage

Human Centric

● “Our” data will live on many devices
– But be safe from malicious access

● We can access our data anytime, in part (fast) or in full (potentially slow,
requires full sync)

● We can access our data from any device, including not our own
(requires private key)

● We can share and collaborate on our data
● We can selectively allow access to our data from processing nodes

– e.g. devices such as Printers

Infrastructure

● Web’s focus on “Server” functionality aka application pushes
web solutions to the “application” level of the OSI stack

● Internet != web
– Internet is infrastructure, ubiquitous, doesn’t care about specific

applications

● Need infrastructure protocols, not more application
frameworks

Peer-to-peer

● Peer as in host: no distinct client or server role → shifts
responsibility to host owner

● Peer as in person: host-oriented is foundation for person-
oriented (human centric) networking

Progress

Liberate

● https://gitlab.com/interpeer/liberate/
● “small platform liberation library” → minimal platform

abstractions
● C++
● Linux, FreeBSD (other BSD?), OS X, Windows, Android, (iOS?)

https://gitlab.com/interpeer/liberate/

Packeteer

● https://gitlab.com/interpeer/packeteer/
● simplified, asynchronous, event-based socket API.
● C++
● Linux, FreeBSD (other BSD?), OS X, Windows, Android, (iOS?)
● Focus different from other projects: Cross platform (highest

priority), low usage complexity, stable API/ABI, packet
oriented I/O friendly, scalable, efficient, extensible (lowest
priority)

https://gitlab.com/interpeer/packeteer/

Packeteer

● Windows port works, but has bugs
– Probably wants a partial re-write

● Some refactoring of POSIX code required
● No scatter/gather I/O yet
● Some tweaks, extensions
● Semi-modern C++ (focus on library != templates)

Channeler

● Highly WIP
● Multi-channel, packet-oriented protocol

– Channels as in HTTP/3, should allow for efficiency multiplexing various streams

● Ready for protocol extensions such as encryption
– Encryption based on WireGuard/NOISE, with extra handshake

● Provisions for multi-link
● Future: channel-specific tuning of reliability

– FEC, resends, SCTP-like reliability without strict ordering

● UDP-based, but could be on IP or Ethernet

WIP: Multi-Path Tunnelling Protocol

● Part of ADACORSA
● Abstract protocol, focus on messages and state machines
● Paper being written alongside, hopefully published in mid-2021
● Multi-link in Channeler will follow this pattern

Future

Future

● Previous should provide for stable P2P links
● Need a distributed hash table

– Kademlia is good, but needs tweaks to exploit network infrastructure
better

● Need a streaming protocol over stable links, something akin to
PPSPP https://tools.ietf.org/html/rfc7574

● Distributed filesystem(-like) as best API for simple, safe,
distributed applications?

https://tools.ietf.org/html/rfc7574

Contributing

Contributing

● Design identity & guides
● Website & documentation templates
● Any protocol feedback! Any feedback!
● Relatively financed for the next few years

– Not set up for donations yet, but intend to
– Would be good to hire a few developers & staff
– Fundraising experience? Yes please!

Questions?

https://interpeer.io
jens@interpeer.io

https://reset.substack.com/

https://interpeer.io/
mailto:jens@interpeer.io
https://reset.substack.com/

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

It makes use of the works of Mateus Machado Luna.

