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Code-centric performance analysis

• Understanding performance bottlenecks is critical to optimizing (parallel) software

• Profiling and tracing tools help identify parts of code that consume the most time
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Attributing performance (time) to different 
calling contexts

• Requires reasonable understanding of code structure

• Sophisticated profilers can attribute time to calling 
contexts: where was a function called from?

• Many measurement tools:

• HPCToolkit, Caliper, Score-P, TAU, Gprof, Callgrind, perf, Timemory

• cProfile, pyinstrument
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Calling context trees, call graphs, …
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Limitations of current analysis tools

• Support their own unique format(s)

• Limited support for saving or automating analysis

• Most tools only support viewing one dataset at a time

• Lack capabilities to sub-select and focus on specific parts of larger datasets
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hpcviewer’s GUI

Do not enable programmatic analysis of the data 
by the end user
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The main idea behind Hatchet

• A Python-based library to enable programmatic analysis

• Creates an in-memory representation of the graph

• Leverage pandas which supports multi-dimensional tabular datasets

• Use graph as structured index to index pandas dataframes

• A set of operators to sub-select and/or aggregate profile data

• A set of operators to compare multiple datasets
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Pandas and dataframes

7



Abhinav Bhatele @ FOSDEM ‘21

Pandas and dataframes

• Pandas is an open-source Python library 
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• Pandas is an open-source Python library 
for data analysis

• Dataframe: two-dimensional tabular data 
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Pandas and dataframes

• Pandas is an open-source Python library 
for data analysis

• Dataframe: two-dimensional tabular data 
structure

• Supports many operations borrowed from SQL 
databases

• MultiIndex enables working with high-
dimensional data in a 2D data structure
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Canonical data model: a structured index

• Structured index is basically an in-memory graph

• Each node is assigned a unique key, which enables 
using the nodes as the index in the dataframe

• Each node has a Frame that describes the code it 
represents

• a set of key/value pairs

• Frames don’t have a rigid schema

• Nodes define the structure and connectivity
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Frame: { ‘name’: ‘foo’,
             ‘type’: ‘function’ }

Node 1 (key: 0xAB7FC4)

Frame: { ‘file’: ‘bar.c’,
             ‘line’: ’80’, 
             ‘type’: ‘statement’ }

Node 2 (key: 0xCA19E4)

Frame: { ‘file’: ‘baz.c’,
             ‘line’: ’153’, 
             ‘type’: ‘loop’ }

Node 3 (key: 0xF6D5FA)

Frame: { ‘file’: ‘baz.c’,
             ‘line’: ’158’, 
             ‘type’: ‘statement’ }

Node 4 (key: 0x4E6CDA)
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Central data structure: a GraphFrame

• Consists of a structured index 
graph object and a pandas 
dataframe

• Graph stores caller-callee 
relationships

• Dataframe stores all numerical 
and categorical data
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useful orderings (like pre-order, post-order, etc.), if we want to pay
the cost of a graph traversal (or sort) to generate more structured
keys. We default to only guaranteeing uniqueness and not order in
our keys.

3.2 Graphframe
The central data structure in the Hatchet library is a Graphframe,
which combines the structured index Graphwith a pandas DataFrame.
Figure ?? shows the two objects in a graphframe – a graph object
(the index), and a dataframe object storing the metrics associated
with each node.
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Figure 3: In Hatchet, the graphframe consists of a graph and
a dataframe object.

Because of the way we have architected the Hatchet structured
index Graph, we can insert Node objects directly into the pandas
data frame. The nodes are indexed and sorted using their basic
comparison operators, which operate on their key attribute. Thus,
the �rst column in the dataframe (the node) is the index column.
As a convenience, we may also add columns (like name) based on
attributes from each node’s FrameID. For example, in the �gure, we
have added the name and nid columns from the FrameID subclass
for HPCToolkit. This allows us to use regular pandas operations
(selection, �ltering) on these values directly. As we will see later, the
node column itself also allows various graph-semantic functions to
be used, as well.

Finally, in addition to the identifying information for each node,
we also add columns for each associated performance metric (inclu-
sive and exclusive time in the �gure).

Graphs vs. Trees: Hatchet stores the structure (typically a pre�x
tree generated from call paths) in the input data as a directed graph
(instead of a tree) for two reasons. First, subsequent operations on
a tree can create edges, turning the tree into a graph. Additionally,
output from tools such as callgrind is already in the form of a DAG.
Hatchet’s directed graph could be connected or have multiple dis-
connected components. Each entity in the graph, such as a callsite,
procedure frame, or function, is stored as a node and the caller-
callee relationships are stored as directed edges. Each node in the
graph can have one or multiple parents and children.

Bene�ts of Dataframes: We use a pandas dataframe to store all
the numerical and categorical data associated with each node. Pro-
�le data can be inherently high-dimensional when metrics are
gathered per-MPI process and/or thread. In such cases, each node

in the call tree or graph has metrics per-MPI process and/or thread
and this data needs to be stored and indexed hierarchically. To index
the rows of the data frame in such cases, a MultiIndex consisting
of the structured index for the node and MPI rank or thread ID is
used. In the most general case, a row in the data frame is indexed
by a process and/or thread ID (and any other needed identi�ers in
even higher dimensional cases).

3.3 Immutable Graph Semantics
Astute readers may have noted that we are adding direct references
to graph nodes into the Dataframe. The risk this poses in our API
is that client code can extract a subset of a Dataframe and hand
it o� to other client code, which then modi�es the graph index
nodes directly and corrupts all dataframes that use the same nodes.
One key aspect of Hatchet is that its graph nodes use immutable
semantics. The Graphframe API is responsible for ensuring that
operations between any two Graphframes use immutable graph
node references, and that any operations that would modify a graph
node in place instead create an entirely new graph index for the
new frame to work with. So, we implement immutable semantics
using copy-on-write to simplify the management of the graph and
dataframe together.

One further consequence of our index model is that to use two
dataframes together, we require that their graphs be uni�ed. That is,
that they share the same index. This should be obvious when con-
sidering that the nodes are compared by their key values, and two
nodes can only be considered identical within an index if they have
identical keys, which means that they must be in the same graph
for comparison to make sense. We accomplish this by traversing
the graphs and computing their union according to their connec-
tivity and FrameID values (described further in the API section).
Incidentally, this type of restriction is not unusual in pandas, where
comparing two data frames frequently requires reconciling their
indexes, as well. We abstract the details of these graph operations
in Hatchet through the GraphFrame API, which determines when
and how Graphframes should be uni�ed.

3.4 Reading a CCT Dataset
With all of these components, that GraphFrame models the edge
relationships between nodes in the structured data, and a dataframe
storing the numerical (performance metrics such as time, PAPI
counters data, etc.) and categorical data (e.g., load module, �le, line
number) associated with each node. The generality of what can
be stored in a pandas dataframe enables Hatchet to store almost
any kind of contextual information recorded during sampling by
diverse pro�ling tools.

Hatchet provides readers for several input formats to support
data collected by popular pro�ling tools in the HPC community.
Hatchet can read in the database directory generated byHPCToolkit
(hpcprof-mpi), and also split JSON �les generated by Caliper. In
addition, one can provide structured data in Graphviz’ DOT format
or a simple string literal.

Most pro�ling tools that generate CCTs have two kinds of in-
formation in their output, often separated into di�erent parts of
a �le or di�erent �les. The �rst information is the structure of
the CCT – present in experiment.xml in HPCToolkit databases,
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useful orderings (like pre-order, post-order, etc.), if we want to pay
the cost of a graph traversal (or sort) to generate more structured
keys. We default to only guaranteeing uniqueness and not order in
our keys.

3.2 Graphframe
The central data structure in the Hatchet library is a Graphframe,
which combines the structured index Graphwith a pandas DataFrame.
Figure ?? shows the two objects in a graphframe – a graph object
(the index), and a dataframe object storing the metrics associated
with each node.
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Figure 3: In Hatchet, the graphframe consists of a graph and
a dataframe object.

Because of the way we have architected the Hatchet structured
index Graph, we can insert Node objects directly into the pandas
data frame. The nodes are indexed and sorted using their basic
comparison operators, which operate on their key attribute. Thus,
the �rst column in the dataframe (the node) is the index column.
As a convenience, we may also add columns (like name) based on
attributes from each node’s FrameID. For example, in the �gure, we
have added the name and nid columns from the FrameID subclass
for HPCToolkit. This allows us to use regular pandas operations
(selection, �ltering) on these values directly. As we will see later, the
node column itself also allows various graph-semantic functions to
be used, as well.

Finally, in addition to the identifying information for each node,
we also add columns for each associated performance metric (inclu-
sive and exclusive time in the �gure).

Graphs vs. Trees: Hatchet stores the structure (typically a pre�x
tree generated from call paths) in the input data as a directed graph
(instead of a tree) for two reasons. First, subsequent operations on
a tree can create edges, turning the tree into a graph. Additionally,
output from tools such as callgrind is already in the form of a DAG.
Hatchet’s directed graph could be connected or have multiple dis-
connected components. Each entity in the graph, such as a callsite,
procedure frame, or function, is stored as a node and the caller-
callee relationships are stored as directed edges. Each node in the
graph can have one or multiple parents and children.

Bene�ts of Dataframes: We use a pandas dataframe to store all
the numerical and categorical data associated with each node. Pro-
�le data can be inherently high-dimensional when metrics are
gathered per-MPI process and/or thread. In such cases, each node

in the call tree or graph has metrics per-MPI process and/or thread
and this data needs to be stored and indexed hierarchically. To index
the rows of the data frame in such cases, a MultiIndex consisting
of the structured index for the node and MPI rank or thread ID is
used. In the most general case, a row in the data frame is indexed
by a process and/or thread ID (and any other needed identi�ers in
even higher dimensional cases).

3.3 Immutable Graph Semantics
Astute readers may have noted that we are adding direct references
to graph nodes into the Dataframe. The risk this poses in our API
is that client code can extract a subset of a Dataframe and hand
it o� to other client code, which then modi�es the graph index
nodes directly and corrupts all dataframes that use the same nodes.
One key aspect of Hatchet is that its graph nodes use immutable
semantics. The Graphframe API is responsible for ensuring that
operations between any two Graphframes use immutable graph
node references, and that any operations that would modify a graph
node in place instead create an entirely new graph index for the
new frame to work with. So, we implement immutable semantics
using copy-on-write to simplify the management of the graph and
dataframe together.

One further consequence of our index model is that to use two
dataframes together, we require that their graphs be uni�ed. That is,
that they share the same index. This should be obvious when con-
sidering that the nodes are compared by their key values, and two
nodes can only be considered identical within an index if they have
identical keys, which means that they must be in the same graph
for comparison to make sense. We accomplish this by traversing
the graphs and computing their union according to their connec-
tivity and FrameID values (described further in the API section).
Incidentally, this type of restriction is not unusual in pandas, where
comparing two data frames frequently requires reconciling their
indexes, as well. We abstract the details of these graph operations
in Hatchet through the GraphFrame API, which determines when
and how Graphframes should be uni�ed.

3.4 Reading a CCT Dataset
With all of these components, that GraphFrame models the edge
relationships between nodes in the structured data, and a dataframe
storing the numerical (performance metrics such as time, PAPI
counters data, etc.) and categorical data (e.g., load module, �le, line
number) associated with each node. The generality of what can
be stored in a pandas dataframe enables Hatchet to store almost
any kind of contextual information recorded during sampling by
diverse pro�ling tools.

Hatchet provides readers for several input formats to support
data collected by popular pro�ling tools in the HPC community.
Hatchet can read in the database directory generated byHPCToolkit
(hpcprof-mpi), and also split JSON �les generated by Caliper. In
addition, one can provide structured data in Graphviz’ DOT format
or a simple string literal.

Most pro�ling tools that generate CCTs have two kinds of in-
formation in their output, often separated into di�erent parts of
a �le or di�erent �les. The �rst information is the structure of
the CCT – present in experiment.xml in HPCToolkit databases,
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Use of MultiIndex
• When metrics are per MPI process, thread etc….
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Use of MultiIndex
• When metrics are per MPI process, thread etc….
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Immutable semantics for graph nodes

• Having direct references to graph nodes in the dataframe is risky

• In particular when graph nodes are shared by multiple graphframes

• Any operation that modifies graph nodes in place creates a new GraphFrame and a 
new graph index

• Implemented using copy-on-write semantics
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Reading in an input dataset

12

Installing hatchet

https://github.com/hatchet/hatchet• HPCToolkit, Caliper, gprof

• Pyinstrument, cprofile

• String literal

• In progress: Timemory, TAU, cube
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Reading in an input dataset
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Installing hatchet

Contribute a reader
to hatchet!

https://github.com/hatchet/hatchet• HPCToolkit, Caliper, gprof

• Pyinstrument, cprofile

• String literal

• In progress: Timemory, TAU, cube
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Dataframe operation: filter
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Dataframe operation: drop_index_levels
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Dataframe operation: drop_index_levels
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Dataframe operation: drop_index_levels
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Graph operation: squash
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Hatchet provides readers for several input formats to support
data collected by popular pro�ling tools in the HPC community.
Hatchet can read in the database directory generated byHPCToolkit
(hpcprof-mpi), and also split JSON �les generated by Caliper. In
addition, one can provide structured data in Graphviz’ DOT format
or a simple string literal.

Most pro�ling tools that generate CCTs have two kinds of in-
formation in their output, often separated into di�erent parts of
a �le or di�erent �les. The �rst information is the structure of
the CCT – present in experiment.xml in HPCToolkit databases,
and the nodes section of a Caliper JSON �le. The second piece
of information is the performance metrics attached to each node
– available in metric-db �les in HPCToolkit data and in the data
section of a Caliper JSON �les. The readers in Hatchet read in both
pieces of information. The CCT structure is used to construct the
graph object of the graphframe and the performance metrics are
used to construct the graphframe object. As the readers construct
these two objects, they also make connects between the graph and
dataframe objects using the structured index.

4 THE HATCHET API
We now describe some of the important operators provided by
the Hatchet API allowing structured data to be manipulated in
di�erent ways: �ltered, aggregated, pruned, etc. Even though all
of the operations below are performed on the graphframe, some
only modify the dataframe, some only modify the graph, and others
modify both. They are categorized accordingly in the following
sections. Note that we consider a graph to be immutable, so any
operations that lead to changes in the graph structure return a new
graphframe.

4.1 Dataframe Operations

�lter: Filter takes a user-supplied function and applies that to all
rows in the dataframe. The resulting series or dataframe is used to
�lter the dataframe to only return rows that are true. The returned
graphframe preserves the original graph provided as input to the
�lter operation. Figure 4 shows a dataframe before and after a �lter
operation. In this case, the applied function returns all rows where
time is greater than 10.0.

1 gf = GraphFrame( ... )

2 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

Figure 4: The dataframe before (left) and after (right) a �lter
operation on the time column.

Filter is one of the operations that leads to the graph object and
dataframe object becoming inconsistent. After a �lter operation,
there are nodes in the graph that do not return any rows when
used to index into the dataframe. Typically, the user will perform a
squash on the graphframe after a �lter operation to make the graph
and dataframe objects consistent again.

drop_index_levels: When there is per-MPI process or per-thread
data in the dataframe, a user might be interested in aggregating
the data in some fashion to analyze the graph at a coarser granu-
larity. This function allows the user to drop the additional index
columns in the hierarchical index by specifying an aggregation
function. Essentially, this performs a groupby and aggregate op-
eration on the dataframe. The user-supplied function is used to
perform the aggregation over all MPI processes or threads at the
per-node granularity.

update_inclusive_columns: When a graph is rewired (i.e., the
parent-child connections are modi�ed), all the columns in the
dataframe that store inclusive values of some metric become inaccu-
rate. This function performs a post-order traversal of the graph to
update all inclusive metrics stored in the dataframe for each node.

4.2 Graph Operations

squash: The squash operation is typically performed by the user
after a �lter operation on the dataframe. As shown in Figure 5,
squash removes nodes from the graph that were previously removed
from the dataframe due to a �lter operation. When one or more
nodes on a path are removed from the graph, the nearest alive
ancestor is connected by an edge to the nearest alive child on the
path. All call paths in the graph are re-wired in this manner. After
a squash operation, the graph and dataframe become consistent
again. Additionally, a squash operation will make the values in all
columns containing inclusive metrics inaccurate, since the parent-
child relationships have changed. Hence, the squash operation also
calls update_inclusive_columns to make all inclusive columns
in the dataframe accurate again.

1 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

2 squashed_gf = filtered_gf.squash ()

Figure 5: The graph before (left) and after (right) a squash
operation on the graphframe.
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eration on the dataframe. The user-supplied function is used to
perform the aggregation over all MPI processes or threads at the
per-node granularity.

update_inclusive_columns: When a graph is rewired (i.e., the
parent-child connections are modi�ed), all the columns in the
dataframe that store inclusive values of some metric become inaccu-
rate. This function performs a post-order traversal of the graph to
update all inclusive metrics stored in the dataframe for each node.

4.2 Graph Operations

squash: The squash operation is typically performed by the user
after a �lter operation on the dataframe. As shown in Figure 5,
squash removes nodes from the graph that were previously removed
from the dataframe due to a �lter operation. When one or more
nodes on a path are removed from the graph, the nearest alive
ancestor is connected by an edge to the nearest alive child on the
path. All call paths in the graph are re-wired in this manner. After
a squash operation, the graph and dataframe become consistent
again. Additionally, a squash operation will make the values in all
columns containing inclusive metrics inaccurate, since the parent-
child relationships have changed. Hence, the squash operation also
calls update_inclusive_columns to make all inclusive columns
in the dataframe accurate again.
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1 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

2 squashed_gf = filtered_gf.squash ()

Figure 5: The graph before (left) and after (right) a squash
operation on the graphframe.
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Hatchet provides readers for several input formats to support
data collected by popular pro�ling tools in the HPC community.
Hatchet can read in the database directory generated byHPCToolkit
(hpcprof-mpi), and also split JSON �les generated by Caliper. In
addition, one can provide structured data in Graphviz’ DOT format
or a simple string literal.

Most pro�ling tools that generate CCTs have two kinds of in-
formation in their output, often separated into di�erent parts of
a �le or di�erent �les. The �rst information is the structure of
the CCT – present in experiment.xml in HPCToolkit databases,
and the nodes section of a Caliper JSON �le. The second piece
of information is the performance metrics attached to each node
– available in metric-db �les in HPCToolkit data and in the data
section of a Caliper JSON �les. The readers in Hatchet read in both
pieces of information. The CCT structure is used to construct the
graph object of the graphframe and the performance metrics are
used to construct the graphframe object. As the readers construct
these two objects, they also make connects between the graph and
dataframe objects using the structured index.

4 THE HATCHET API
We now describe some of the important operators provided by
the Hatchet API allowing structured data to be manipulated in
di�erent ways: �ltered, aggregated, pruned, etc. Even though all
of the operations below are performed on the graphframe, some
only modify the dataframe, some only modify the graph, and others
modify both. They are categorized accordingly in the following
sections. Note that we consider a graph to be immutable, so any
operations that lead to changes in the graph structure return a new
graphframe.

4.1 Dataframe Operations

�lter: Filter takes a user-supplied function and applies that to all
rows in the dataframe. The resulting series or dataframe is used to
�lter the dataframe to only return rows that are true. The returned
graphframe preserves the original graph provided as input to the
�lter operation. Figure 4 shows a dataframe before and after a �lter
operation. In this case, the applied function returns all rows where
time is greater than 10.0.

1 gf = GraphFrame( ... )

2 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

Figure 4: The dataframe before (left) and after (right) a �lter
operation on the time column.

Filter is one of the operations that leads to the graph object and
dataframe object becoming inconsistent. After a �lter operation,
there are nodes in the graph that do not return any rows when
used to index into the dataframe. Typically, the user will perform a
squash on the graphframe after a �lter operation to make the graph
and dataframe objects consistent again.

drop_index_levels: When there is per-MPI process or per-thread
data in the dataframe, a user might be interested in aggregating
the data in some fashion to analyze the graph at a coarser granu-
larity. This function allows the user to drop the additional index
columns in the hierarchical index by specifying an aggregation
function. Essentially, this performs a groupby and aggregate op-
eration on the dataframe. The user-supplied function is used to
perform the aggregation over all MPI processes or threads at the
per-node granularity.

update_inclusive_columns: When a graph is rewired (i.e., the
parent-child connections are modi�ed), all the columns in the
dataframe that store inclusive values of some metric become inaccu-
rate. This function performs a post-order traversal of the graph to
update all inclusive metrics stored in the dataframe for each node.

4.2 Graph Operations

squash: The squash operation is typically performed by the user
after a �lter operation on the dataframe. As shown in Figure 5,
squash removes nodes from the graph that were previously removed
from the dataframe due to a �lter operation. When one or more
nodes on a path are removed from the graph, the nearest alive
ancestor is connected by an edge to the nearest alive child on the
path. All call paths in the graph are re-wired in this manner. After
a squash operation, the graph and dataframe become consistent
again. Additionally, a squash operation will make the values in all
columns containing inclusive metrics inaccurate, since the parent-
child relationships have changed. Hence, the squash operation also
calls update_inclusive_columns to make all inclusive columns
in the dataframe accurate again.

1 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

2 squashed_gf = filtered_gf.squash ()

Figure 5: The graph before (left) and after (right) a squash
operation on the graphframe.
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Hatchet provides readers for several input formats to support
data collected by popular pro�ling tools in the HPC community.
Hatchet can read in the database directory generated byHPCToolkit
(hpcprof-mpi), and also split JSON �les generated by Caliper. In
addition, one can provide structured data in Graphviz’ DOT format
or a simple string literal.

Most pro�ling tools that generate CCTs have two kinds of in-
formation in their output, often separated into di�erent parts of
a �le or di�erent �les. The �rst information is the structure of
the CCT – present in experiment.xml in HPCToolkit databases,
and the nodes section of a Caliper JSON �le. The second piece
of information is the performance metrics attached to each node
– available in metric-db �les in HPCToolkit data and in the data
section of a Caliper JSON �les. The readers in Hatchet read in both
pieces of information. The CCT structure is used to construct the
graph object of the graphframe and the performance metrics are
used to construct the graphframe object. As the readers construct
these two objects, they also make connects between the graph and
dataframe objects using the structured index.

4 THE HATCHET API
We now describe some of the important operators provided by
the Hatchet API allowing structured data to be manipulated in
di�erent ways: �ltered, aggregated, pruned, etc. Even though all
of the operations below are performed on the graphframe, some
only modify the dataframe, some only modify the graph, and others
modify both. They are categorized accordingly in the following
sections. Note that we consider a graph to be immutable, so any
operations that lead to changes in the graph structure return a new
graphframe.

4.1 Dataframe Operations

�lter: Filter takes a user-supplied function and applies that to all
rows in the dataframe. The resulting series or dataframe is used to
�lter the dataframe to only return rows that are true. The returned
graphframe preserves the original graph provided as input to the
�lter operation. Figure 4 shows a dataframe before and after a �lter
operation. In this case, the applied function returns all rows where
time is greater than 10.0.

1 gf = GraphFrame( ... )

2 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

Figure 4: The dataframe before (left) and after (right) a �lter
operation on the time column.

Filter is one of the operations that leads to the graph object and
dataframe object becoming inconsistent. After a �lter operation,
there are nodes in the graph that do not return any rows when
used to index into the dataframe. Typically, the user will perform a
squash on the graphframe after a �lter operation to make the graph
and dataframe objects consistent again.

drop_index_levels: When there is per-MPI process or per-thread
data in the dataframe, a user might be interested in aggregating
the data in some fashion to analyze the graph at a coarser granu-
larity. This function allows the user to drop the additional index
columns in the hierarchical index by specifying an aggregation
function. Essentially, this performs a groupby and aggregate op-
eration on the dataframe. The user-supplied function is used to
perform the aggregation over all MPI processes or threads at the
per-node granularity.

update_inclusive_columns: When a graph is rewired (i.e., the
parent-child connections are modi�ed), all the columns in the
dataframe that store inclusive values of some metric become inaccu-
rate. This function performs a post-order traversal of the graph to
update all inclusive metrics stored in the dataframe for each node.

4.2 Graph Operations

squash: The squash operation is typically performed by the user
after a �lter operation on the dataframe. As shown in Figure 5,
squash removes nodes from the graph that were previously removed
from the dataframe due to a �lter operation. When one or more
nodes on a path are removed from the graph, the nearest alive
ancestor is connected by an edge to the nearest alive child on the
path. All call paths in the graph are re-wired in this manner. After
a squash operation, the graph and dataframe become consistent
again. Additionally, a squash operation will make the values in all
columns containing inclusive metrics inaccurate, since the parent-
child relationships have changed. Hence, the squash operation also
calls update_inclusive_columns to make all inclusive columns
in the dataframe accurate again.
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1 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

2 squashed_gf = filtered_gf.squash ()

Figure 5: The graph before (left) and after (right) a squash
operation on the graphframe.
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Hatchet provides readers for several input formats to support
data collected by popular pro�ling tools in the HPC community.
Hatchet can read in the database directory generated byHPCToolkit
(hpcprof-mpi), and also split JSON �les generated by Caliper. In
addition, one can provide structured data in Graphviz’ DOT format
or a simple string literal.

Most pro�ling tools that generate CCTs have two kinds of in-
formation in their output, often separated into di�erent parts of
a �le or di�erent �les. The �rst information is the structure of
the CCT – present in experiment.xml in HPCToolkit databases,
and the nodes section of a Caliper JSON �le. The second piece
of information is the performance metrics attached to each node
– available in metric-db �les in HPCToolkit data and in the data
section of a Caliper JSON �les. The readers in Hatchet read in both
pieces of information. The CCT structure is used to construct the
graph object of the graphframe and the performance metrics are
used to construct the graphframe object. As the readers construct
these two objects, they also make connects between the graph and
dataframe objects using the structured index.

4 THE HATCHET API
We now describe some of the important operators provided by
the Hatchet API allowing structured data to be manipulated in
di�erent ways: �ltered, aggregated, pruned, etc. Even though all
of the operations below are performed on the graphframe, some
only modify the dataframe, some only modify the graph, and others
modify both. They are categorized accordingly in the following
sections. Note that we consider a graph to be immutable, so any
operations that lead to changes in the graph structure return a new
graphframe.

4.1 Dataframe Operations

�lter: Filter takes a user-supplied function and applies that to all
rows in the dataframe. The resulting series or dataframe is used to
�lter the dataframe to only return rows that are true. The returned
graphframe preserves the original graph provided as input to the
�lter operation. Figure 4 shows a dataframe before and after a �lter
operation. In this case, the applied function returns all rows where
time is greater than 10.0.

1 gf = GraphFrame( ... )

2 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

Figure 4: The dataframe before (left) and after (right) a �lter
operation on the time column.

Filter is one of the operations that leads to the graph object and
dataframe object becoming inconsistent. After a �lter operation,
there are nodes in the graph that do not return any rows when
used to index into the dataframe. Typically, the user will perform a
squash on the graphframe after a �lter operation to make the graph
and dataframe objects consistent again.

drop_index_levels: When there is per-MPI process or per-thread
data in the dataframe, a user might be interested in aggregating
the data in some fashion to analyze the graph at a coarser granu-
larity. This function allows the user to drop the additional index
columns in the hierarchical index by specifying an aggregation
function. Essentially, this performs a groupby and aggregate op-
eration on the dataframe. The user-supplied function is used to
perform the aggregation over all MPI processes or threads at the
per-node granularity.

update_inclusive_columns: When a graph is rewired (i.e., the
parent-child connections are modi�ed), all the columns in the
dataframe that store inclusive values of some metric become inaccu-
rate. This function performs a post-order traversal of the graph to
update all inclusive metrics stored in the dataframe for each node.

4.2 Graph Operations

squash: The squash operation is typically performed by the user
after a �lter operation on the dataframe. As shown in Figure 5,
squash removes nodes from the graph that were previously removed
from the dataframe due to a �lter operation. When one or more
nodes on a path are removed from the graph, the nearest alive
ancestor is connected by an edge to the nearest alive child on the
path. All call paths in the graph are re-wired in this manner. After
a squash operation, the graph and dataframe become consistent
again. Additionally, a squash operation will make the values in all
columns containing inclusive metrics inaccurate, since the parent-
child relationships have changed. Hence, the squash operation also
calls update_inclusive_columns to make all inclusive columns
in the dataframe accurate again.

1 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

2 squashed_gf = filtered_gf.squash ()

Figure 5: The graph before (left) and after (right) a squash
operation on the graphframe.
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Hatchet provides readers for several input formats to support
data collected by popular pro�ling tools in the HPC community.
Hatchet can read in the database directory generated byHPCToolkit
(hpcprof-mpi), and also split JSON �les generated by Caliper. In
addition, one can provide structured data in Graphviz’ DOT format
or a simple string literal.

Most pro�ling tools that generate CCTs have two kinds of in-
formation in their output, often separated into di�erent parts of
a �le or di�erent �les. The �rst information is the structure of
the CCT – present in experiment.xml in HPCToolkit databases,
and the nodes section of a Caliper JSON �le. The second piece
of information is the performance metrics attached to each node
– available in metric-db �les in HPCToolkit data and in the data
section of a Caliper JSON �les. The readers in Hatchet read in both
pieces of information. The CCT structure is used to construct the
graph object of the graphframe and the performance metrics are
used to construct the graphframe object. As the readers construct
these two objects, they also make connects between the graph and
dataframe objects using the structured index.

4 THE HATCHET API
We now describe some of the important operators provided by
the Hatchet API allowing structured data to be manipulated in
di�erent ways: �ltered, aggregated, pruned, etc. Even though all
of the operations below are performed on the graphframe, some
only modify the dataframe, some only modify the graph, and others
modify both. They are categorized accordingly in the following
sections. Note that we consider a graph to be immutable, so any
operations that lead to changes in the graph structure return a new
graphframe.

4.1 Dataframe Operations

�lter: Filter takes a user-supplied function and applies that to all
rows in the dataframe. The resulting series or dataframe is used to
�lter the dataframe to only return rows that are true. The returned
graphframe preserves the original graph provided as input to the
�lter operation. Figure 4 shows a dataframe before and after a �lter
operation. In this case, the applied function returns all rows where
time is greater than 10.0.

1 gf = GraphFrame( ... )

2 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

Figure 4: The dataframe before (left) and after (right) a �lter
operation on the time column.

Filter is one of the operations that leads to the graph object and
dataframe object becoming inconsistent. After a �lter operation,
there are nodes in the graph that do not return any rows when
used to index into the dataframe. Typically, the user will perform a
squash on the graphframe after a �lter operation to make the graph
and dataframe objects consistent again.

drop_index_levels: When there is per-MPI process or per-thread
data in the dataframe, a user might be interested in aggregating
the data in some fashion to analyze the graph at a coarser granu-
larity. This function allows the user to drop the additional index
columns in the hierarchical index by specifying an aggregation
function. Essentially, this performs a groupby and aggregate op-
eration on the dataframe. The user-supplied function is used to
perform the aggregation over all MPI processes or threads at the
per-node granularity.

update_inclusive_columns: When a graph is rewired (i.e., the
parent-child connections are modi�ed), all the columns in the
dataframe that store inclusive values of some metric become inaccu-
rate. This function performs a post-order traversal of the graph to
update all inclusive metrics stored in the dataframe for each node.

4.2 Graph Operations

squash: The squash operation is typically performed by the user
after a �lter operation on the dataframe. As shown in Figure 5,
squash removes nodes from the graph that were previously removed
from the dataframe due to a �lter operation. When one or more
nodes on a path are removed from the graph, the nearest alive
ancestor is connected by an edge to the nearest alive child on the
path. All call paths in the graph are re-wired in this manner. After
a squash operation, the graph and dataframe become consistent
again. Additionally, a squash operation will make the values in all
columns containing inclusive metrics inaccurate, since the parent-
child relationships have changed. Hence, the squash operation also
calls update_inclusive_columns to make all inclusive columns
in the dataframe accurate again.

1 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

2 squashed_gf = filtered_gf.squash ()

Figure 5: The graph before (left) and after (right) a squash
operation on the graphframe.
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Hatchet provides readers for several input formats to support
data collected by popular pro�ling tools in the HPC community.
Hatchet can read in the database directory generated byHPCToolkit
(hpcprof-mpi), and also split JSON �les generated by Caliper. In
addition, one can provide structured data in Graphviz’ DOT format
or a simple string literal.

Most pro�ling tools that generate CCTs have two kinds of in-
formation in their output, often separated into di�erent parts of
a �le or di�erent �les. The �rst information is the structure of
the CCT – present in experiment.xml in HPCToolkit databases,
and the nodes section of a Caliper JSON �le. The second piece
of information is the performance metrics attached to each node
– available in metric-db �les in HPCToolkit data and in the data
section of a Caliper JSON �les. The readers in Hatchet read in both
pieces of information. The CCT structure is used to construct the
graph object of the graphframe and the performance metrics are
used to construct the graphframe object. As the readers construct
these two objects, they also make connects between the graph and
dataframe objects using the structured index.

4 THE HATCHET API
We now describe some of the important operators provided by
the Hatchet API allowing structured data to be manipulated in
di�erent ways: �ltered, aggregated, pruned, etc. Even though all
of the operations below are performed on the graphframe, some
only modify the dataframe, some only modify the graph, and others
modify both. They are categorized accordingly in the following
sections. Note that we consider a graph to be immutable, so any
operations that lead to changes in the graph structure return a new
graphframe.

4.1 Dataframe Operations

�lter: Filter takes a user-supplied function and applies that to all
rows in the dataframe. The resulting series or dataframe is used to
�lter the dataframe to only return rows that are true. The returned
graphframe preserves the original graph provided as input to the
�lter operation. Figure 4 shows a dataframe before and after a �lter
operation. In this case, the applied function returns all rows where
time is greater than 10.0.

1 gf = GraphFrame( ... )

2 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

Figure 4: The dataframe before (left) and after (right) a �lter
operation on the time column.

Filter is one of the operations that leads to the graph object and
dataframe object becoming inconsistent. After a �lter operation,
there are nodes in the graph that do not return any rows when
used to index into the dataframe. Typically, the user will perform a
squash on the graphframe after a �lter operation to make the graph
and dataframe objects consistent again.

drop_index_levels: When there is per-MPI process or per-thread
data in the dataframe, a user might be interested in aggregating
the data in some fashion to analyze the graph at a coarser granu-
larity. This function allows the user to drop the additional index
columns in the hierarchical index by specifying an aggregation
function. Essentially, this performs a groupby and aggregate op-
eration on the dataframe. The user-supplied function is used to
perform the aggregation over all MPI processes or threads at the
per-node granularity.

update_inclusive_columns: When a graph is rewired (i.e., the
parent-child connections are modi�ed), all the columns in the
dataframe that store inclusive values of some metric become inaccu-
rate. This function performs a post-order traversal of the graph to
update all inclusive metrics stored in the dataframe for each node.

4.2 Graph Operations

squash: The squash operation is typically performed by the user
after a �lter operation on the dataframe. As shown in Figure 5,
squash removes nodes from the graph that were previously removed
from the dataframe due to a �lter operation. When one or more
nodes on a path are removed from the graph, the nearest alive
ancestor is connected by an edge to the nearest alive child on the
path. All call paths in the graph are re-wired in this manner. After
a squash operation, the graph and dataframe become consistent
again. Additionally, a squash operation will make the values in all
columns containing inclusive metrics inaccurate, since the parent-
child relationships have changed. Hence, the squash operation also
calls update_inclusive_columns to make all inclusive columns
in the dataframe accurate again.
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1 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

2 squashed_gf = filtered_gf.squash ()

Figure 5: The graph before (left) and after (right) a squash
operation on the graphframe.
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Hatchet provides readers for several input formats to support
data collected by popular pro�ling tools in the HPC community.
Hatchet can read in the database directory generated byHPCToolkit
(hpcprof-mpi), and also split JSON �les generated by Caliper. In
addition, one can provide structured data in Graphviz’ DOT format
or a simple string literal.

Most pro�ling tools that generate CCTs have two kinds of in-
formation in their output, often separated into di�erent parts of
a �le or di�erent �les. The �rst information is the structure of
the CCT – present in experiment.xml in HPCToolkit databases,
and the nodes section of a Caliper JSON �le. The second piece
of information is the performance metrics attached to each node
– available in metric-db �les in HPCToolkit data and in the data
section of a Caliper JSON �les. The readers in Hatchet read in both
pieces of information. The CCT structure is used to construct the
graph object of the graphframe and the performance metrics are
used to construct the graphframe object. As the readers construct
these two objects, they also make connects between the graph and
dataframe objects using the structured index.

4 THE HATCHET API
We now describe some of the important operators provided by
the Hatchet API allowing structured data to be manipulated in
di�erent ways: �ltered, aggregated, pruned, etc. Even though all
of the operations below are performed on the graphframe, some
only modify the dataframe, some only modify the graph, and others
modify both. They are categorized accordingly in the following
sections. Note that we consider a graph to be immutable, so any
operations that lead to changes in the graph structure return a new
graphframe.

4.1 Dataframe Operations

�lter: Filter takes a user-supplied function and applies that to all
rows in the dataframe. The resulting series or dataframe is used to
�lter the dataframe to only return rows that are true. The returned
graphframe preserves the original graph provided as input to the
�lter operation. Figure 4 shows a dataframe before and after a �lter
operation. In this case, the applied function returns all rows where
time is greater than 10.0.

1 gf = GraphFrame( ... )

2 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

Figure 4: The dataframe before (left) and after (right) a �lter
operation on the time column.

Filter is one of the operations that leads to the graph object and
dataframe object becoming inconsistent. After a �lter operation,
there are nodes in the graph that do not return any rows when
used to index into the dataframe. Typically, the user will perform a
squash on the graphframe after a �lter operation to make the graph
and dataframe objects consistent again.

drop_index_levels: When there is per-MPI process or per-thread
data in the dataframe, a user might be interested in aggregating
the data in some fashion to analyze the graph at a coarser granu-
larity. This function allows the user to drop the additional index
columns in the hierarchical index by specifying an aggregation
function. Essentially, this performs a groupby and aggregate op-
eration on the dataframe. The user-supplied function is used to
perform the aggregation over all MPI processes or threads at the
per-node granularity.

update_inclusive_columns: When a graph is rewired (i.e., the
parent-child connections are modi�ed), all the columns in the
dataframe that store inclusive values of some metric become inaccu-
rate. This function performs a post-order traversal of the graph to
update all inclusive metrics stored in the dataframe for each node.

4.2 Graph Operations

squash: The squash operation is typically performed by the user
after a �lter operation on the dataframe. As shown in Figure 5,
squash removes nodes from the graph that were previously removed
from the dataframe due to a �lter operation. When one or more
nodes on a path are removed from the graph, the nearest alive
ancestor is connected by an edge to the nearest alive child on the
path. All call paths in the graph are re-wired in this manner. After
a squash operation, the graph and dataframe become consistent
again. Additionally, a squash operation will make the values in all
columns containing inclusive metrics inaccurate, since the parent-
child relationships have changed. Hence, the squash operation also
calls update_inclusive_columns to make all inclusive columns
in the dataframe accurate again.

1 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

2 squashed_gf = filtered_gf.squash ()

Figure 5: The graph before (left) and after (right) a squash
operation on the graphframe.
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Hatchet provides readers for several input formats to support
data collected by popular pro�ling tools in the HPC community.
Hatchet can read in the database directory generated byHPCToolkit
(hpcprof-mpi), and also split JSON �les generated by Caliper. In
addition, one can provide structured data in Graphviz’ DOT format
or a simple string literal.

Most pro�ling tools that generate CCTs have two kinds of in-
formation in their output, often separated into di�erent parts of
a �le or di�erent �les. The �rst information is the structure of
the CCT – present in experiment.xml in HPCToolkit databases,
and the nodes section of a Caliper JSON �le. The second piece
of information is the performance metrics attached to each node
– available in metric-db �les in HPCToolkit data and in the data
section of a Caliper JSON �les. The readers in Hatchet read in both
pieces of information. The CCT structure is used to construct the
graph object of the graphframe and the performance metrics are
used to construct the graphframe object. As the readers construct
these two objects, they also make connects between the graph and
dataframe objects using the structured index.

4 THE HATCHET API
We now describe some of the important operators provided by
the Hatchet API allowing structured data to be manipulated in
di�erent ways: �ltered, aggregated, pruned, etc. Even though all
of the operations below are performed on the graphframe, some
only modify the dataframe, some only modify the graph, and others
modify both. They are categorized accordingly in the following
sections. Note that we consider a graph to be immutable, so any
operations that lead to changes in the graph structure return a new
graphframe.

4.1 Dataframe Operations

�lter: Filter takes a user-supplied function and applies that to all
rows in the dataframe. The resulting series or dataframe is used to
�lter the dataframe to only return rows that are true. The returned
graphframe preserves the original graph provided as input to the
�lter operation. Figure 4 shows a dataframe before and after a �lter
operation. In this case, the applied function returns all rows where
time is greater than 10.0.

1 gf = GraphFrame( ... )

2 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

Figure 4: The dataframe before (left) and after (right) a �lter
operation on the time column.
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there are nodes in the graph that do not return any rows when
used to index into the dataframe. Typically, the user will perform a
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and dataframe objects consistent again.

drop_index_levels: When there is per-MPI process or per-thread
data in the dataframe, a user might be interested in aggregating
the data in some fashion to analyze the graph at a coarser granu-
larity. This function allows the user to drop the additional index
columns in the hierarchical index by specifying an aggregation
function. Essentially, this performs a groupby and aggregate op-
eration on the dataframe. The user-supplied function is used to
perform the aggregation over all MPI processes or threads at the
per-node granularity.

update_inclusive_columns: When a graph is rewired (i.e., the
parent-child connections are modi�ed), all the columns in the
dataframe that store inclusive values of some metric become inaccu-
rate. This function performs a post-order traversal of the graph to
update all inclusive metrics stored in the dataframe for each node.

4.2 Graph Operations

squash: The squash operation is typically performed by the user
after a �lter operation on the dataframe. As shown in Figure 5,
squash removes nodes from the graph that were previously removed
from the dataframe due to a �lter operation. When one or more
nodes on a path are removed from the graph, the nearest alive
ancestor is connected by an edge to the nearest alive child on the
path. All call paths in the graph are re-wired in this manner. After
a squash operation, the graph and dataframe become consistent
again. Additionally, a squash operation will make the values in all
columns containing inclusive metrics inaccurate, since the parent-
child relationships have changed. Hence, the squash operation also
calls update_inclusive_columns to make all inclusive columns
in the dataframe accurate again.
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Figure 5: The graph before (left) and after (right) a squash
operation on the graphframe.
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there are nodes in the graph that do not return any rows when
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data in the dataframe, a user might be interested in aggregating
the data in some fashion to analyze the graph at a coarser granu-
larity. This function allows the user to drop the additional index
columns in the hierarchical index by specifying an aggregation
function. Essentially, this performs a groupby and aggregate op-
eration on the dataframe. The user-supplied function is used to
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parent-child connections are modi�ed), all the columns in the
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update all inclusive metrics stored in the dataframe for each node.
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squash removes nodes from the graph that were previously removed
from the dataframe due to a �lter operation. When one or more
nodes on a path are removed from the graph, the nearest alive
ancestor is connected by an edge to the nearest alive child on the
path. All call paths in the graph are re-wired in this manner. After
a squash operation, the graph and dataframe become consistent
again. Additionally, a squash operation will make the values in all
columns containing inclusive metrics inaccurate, since the parent-
child relationships have changed. Hence, the squash operation also
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rows in the dataframe. The resulting series or dataframe is used to
�lter the dataframe to only return rows that are true. The returned
graphframe preserves the original graph provided as input to the
�lter operation. Figure 4 shows a dataframe before and after a �lter
operation. In this case, the applied function returns all rows where
time is greater than 10.0.
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Filter is one of the operations that leads to the graph object and
dataframe object becoming inconsistent. After a �lter operation,
there are nodes in the graph that do not return any rows when
used to index into the dataframe. Typically, the user will perform a
squash on the graphframe after a �lter operation to make the graph
and dataframe objects consistent again.

drop_index_levels: When there is per-MPI process or per-thread
data in the dataframe, a user might be interested in aggregating
the data in some fashion to analyze the graph at a coarser granu-
larity. This function allows the user to drop the additional index
columns in the hierarchical index by specifying an aggregation
function. Essentially, this performs a groupby and aggregate op-
eration on the dataframe. The user-supplied function is used to
perform the aggregation over all MPI processes or threads at the
per-node granularity.

update_inclusive_columns: When a graph is rewired (i.e., the
parent-child connections are modi�ed), all the columns in the
dataframe that store inclusive values of some metric become inaccu-
rate. This function performs a post-order traversal of the graph to
update all inclusive metrics stored in the dataframe for each node.

4.2 Graph Operations

squash: The squash operation is typically performed by the user
after a �lter operation on the dataframe. As shown in Figure 5,
squash removes nodes from the graph that were previously removed
from the dataframe due to a �lter operation. When one or more
nodes on a path are removed from the graph, the nearest alive
ancestor is connected by an edge to the nearest alive child on the
path. All call paths in the graph are re-wired in this manner. After
a squash operation, the graph and dataframe become consistent
again. Additionally, a squash operation will make the values in all
columns containing inclusive metrics inaccurate, since the parent-
child relationships have changed. Hence, the squash operation also
calls update_inclusive_columns to make all inclusive columns
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there are nodes in the graph that do not return any rows when
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and dataframe objects consistent again.
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larity. This function allows the user to drop the additional index
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function. Essentially, this performs a groupby and aggregate op-
eration on the dataframe. The user-supplied function is used to
perform the aggregation over all MPI processes or threads at the
per-node granularity.

update_inclusive_columns: When a graph is rewired (i.e., the
parent-child connections are modi�ed), all the columns in the
dataframe that store inclusive values of some metric become inaccu-
rate. This function performs a post-order traversal of the graph to
update all inclusive metrics stored in the dataframe for each node.

4.2 Graph Operations

squash: The squash operation is typically performed by the user
after a �lter operation on the dataframe. As shown in Figure 5,
squash removes nodes from the graph that were previously removed
from the dataframe due to a �lter operation. When one or more
nodes on a path are removed from the graph, the nearest alive
ancestor is connected by an edge to the nearest alive child on the
path. All call paths in the graph are re-wired in this manner. After
a squash operation, the graph and dataframe become consistent
again. Additionally, a squash operation will make the values in all
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In some cases, a squash may need to merge nodes. The �lter
and squash calls on lines 4-6 remove the physics and hypre nodes
from the graph, but main must now connect to both psm2 nodes.
In a calling context tree, a node cannot have two children with
identical frames, so we merge the psm2 nodes together. The graph
now represents only the time spent in psm2 when called directly
or transitively from main. As mentioned earlier, node merging can
convert a tree into a graph. Squash and other Hatchet API calls are
general and handle both trees and graphs.

A squash operation creates a new DataFrame in addition to the
new graph. The new DataFrame contains all rows from the original
DataFrame, but its index points to nodes in the new graph. Addi-
tionally, a squash operation will make the values in all columns
containing inclusive metrics inaccurate, since the parent-child re-
lationships have changed. Hence, the squash operation also calls
update_inclusive_columns to make all inclusive columns in the
DataFrame accurate again.

equal: This checks whether two graphs have the same nodes and
edge connectivity when traversing from their roots. If they are
equivalent, it returns true, otherwise it returns false.

union: The union function takes two graphs and creates a uni�ed
graph, preserving all edges structure of the original graphs, and
merging nodes with identical context. When Hatchet performs bi-
nary operations on two GraphFrames with unequal graphs, a union
is performed beforehand to ensure that the graphs are structurally
equivalent. This ensures that operands to element-wise operations
like add and subtract, can be aligned by their respective nodes.

4.3 GraphFrame Operations

copy: The copy operation returns a shallow copy of a GraphFrame.
It creates a new GraphFrame with a copy of the original Graph-
Frame’s DataFrame, but the same graph. As mentioned earlier,
graphs in Hatchet use immutable semantics, and they are copied
only when they need to be restructured. This property allows us to
reuse graphs from GraphFrame to GraphFrame if the operations
performed on the GraphFrame do not mutate the graph.

unify: Similar to union on graphs, unify operates on GraphFrames.
It calls union on the two graphs, and then reindexes the DataFrames
in both GraphFrames to be indexed by the nodes in the uni�ed
graph. Binary operations on GraphFrames call unify which in turn
calls union on the respective graphs.

add: Assuming the graphs in two GraphFrames are equal, the add
(+) operation computes the element-wise sum of two DataFrames.
In the case where the two graphs are not identical, unify (described
above) is applied �rst to create a uni�ed graph before performing
the sum. The DataFrames are copied and reindexed by the combined
graph, and the add operation returns new GraphFrame with the
result of adding these DataFrames. Hatchet also provides an in-place
version of the add operator: + =.

subtract: The subtract operation is similar to the add operation in
that it requires the two graphs to be identical. It applies union and
reindexes DataFrames if necessary. Once the graphs are uni�ed, the
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1 gf1 = GraphFrame( ... )

2 gf2 = GraphFrame( ... )
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4 gf2 -= gf1

Figure 6: Subtraction operation on twoGraphFrames (result-
ing graph at the bottom).

subtract operation computes the element-wise di�erence between
the two DataFrames. The subtract operation returns a new Graph-
Frame, or it modi�es one of the GraphFrames in place in the case
of the in-place subtraction (� =). Figure 6 shows the subtraction
of one GraphFrame from another and the graph for the resulting
GraphFrame.

4.4 Visualizing Output
Hatchet provides its own visualization as well as support for two
other visualizations of the structured data stored in the graph object.
The native visualization in Hatchet is a string that can be printed
to the terminal to display the graph. Hatchet can also output the
graph in the DOT format or a folded stack used by �ame graph [8].

The dot utility in Graphviz produces a hierarchical drawing of
directed graphs, particularly useful for showing the direction of
the edges. Flame graphs are useful for quickly identifying the per-
formance bottleneck, that is the box with the largest width. The
y-axis of the �ame graph represents the call stack depth. Figure 7
shows the same Hatchet graph presented in the three supported vi-
sualizations: terminal, DOT, and �ame graph. For particularly large
graphs, these visual representations can be useful for quickly identi-
fying caller-callee relationships. However, identifying performance
bottlenecks or load imbalance might be easier in the DataFrame.

5 PERFORMANCE
It is vital that performance analysis tools have low overheads and
that they enable quick analysis of performance datasets without the
user having to wait for a long time for each operation to complete.
In Figure 8, we provide execution times for some operations in
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In some cases, a squash may need to merge nodes. The �lter
and squash calls on lines 4-6 remove the physics and hypre nodes
from the graph, but main must now connect to both psm2 nodes.
In a calling context tree, a node cannot have two children with
identical frames, so we merge the psm2 nodes together. The graph
now represents only the time spent in psm2 when called directly
or transitively from main. As mentioned earlier, node merging can
convert a tree into a graph. Squash and other Hatchet API calls are
general and handle both trees and graphs.

A squash operation creates a new DataFrame in addition to the
new graph. The new DataFrame contains all rows from the original
DataFrame, but its index points to nodes in the new graph. Addi-
tionally, a squash operation will make the values in all columns
containing inclusive metrics inaccurate, since the parent-child re-
lationships have changed. Hence, the squash operation also calls
update_inclusive_columns to make all inclusive columns in the
DataFrame accurate again.

equal: This checks whether two graphs have the same nodes and
edge connectivity when traversing from their roots. If they are
equivalent, it returns true, otherwise it returns false.

union: The union function takes two graphs and creates a uni�ed
graph, preserving all edges structure of the original graphs, and
merging nodes with identical context. When Hatchet performs bi-
nary operations on two GraphFrames with unequal graphs, a union
is performed beforehand to ensure that the graphs are structurally
equivalent. This ensures that operands to element-wise operations
like add and subtract, can be aligned by their respective nodes.

4.3 GraphFrame Operations

copy: The copy operation returns a shallow copy of a GraphFrame.
It creates a new GraphFrame with a copy of the original Graph-
Frame’s DataFrame, but the same graph. As mentioned earlier,
graphs in Hatchet use immutable semantics, and they are copied
only when they need to be restructured. This property allows us to
reuse graphs from GraphFrame to GraphFrame if the operations
performed on the GraphFrame do not mutate the graph.

unify: Similar to union on graphs, unify operates on GraphFrames.
It calls union on the two graphs, and then reindexes the DataFrames
in both GraphFrames to be indexed by the nodes in the uni�ed
graph. Binary operations on GraphFrames call unify which in turn
calls union on the respective graphs.

add: Assuming the graphs in two GraphFrames are equal, the add
(+) operation computes the element-wise sum of two DataFrames.
In the case where the two graphs are not identical, unify (described
above) is applied �rst to create a uni�ed graph before performing
the sum. The DataFrames are copied and reindexed by the combined
graph, and the add operation returns new GraphFrame with the
result of adding these DataFrames. Hatchet also provides an in-place
version of the add operator: + =.

subtract: The subtract operation is similar to the add operation in
that it requires the two graphs to be identical. It applies union and
reindexes DataFrames if necessary. Once the graphs are uni�ed, the
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Figure 6: Subtraction operation on twoGraphFrames (result-
ing graph at the bottom).

subtract operation computes the element-wise di�erence between
the two DataFrames. The subtract operation returns a new Graph-
Frame, or it modi�es one of the GraphFrames in place in the case
of the in-place subtraction (� =). Figure 6 shows the subtraction
of one GraphFrame from another and the graph for the resulting
GraphFrame.

4.4 Visualizing Output
Hatchet provides its own visualization as well as support for two
other visualizations of the structured data stored in the graph object.
The native visualization in Hatchet is a string that can be printed
to the terminal to display the graph. Hatchet can also output the
graph in the DOT format or a folded stack used by �ame graph [8].

The dot utility in Graphviz produces a hierarchical drawing of
directed graphs, particularly useful for showing the direction of
the edges. Flame graphs are useful for quickly identifying the per-
formance bottleneck, that is the box with the largest width. The
y-axis of the �ame graph represents the call stack depth. Figure 7
shows the same Hatchet graph presented in the three supported vi-
sualizations: terminal, DOT, and �ame graph. For particularly large
graphs, these visual representations can be useful for quickly identi-
fying caller-callee relationships. However, identifying performance
bottlenecks or load imbalance might be easier in the DataFrame.

5 PERFORMANCE
It is vital that performance analysis tools have low overheads and
that they enable quick analysis of performance datasets without the
user having to wait for a long time for each operation to complete.
In Figure 8, we provide execution times for some operations in
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In some cases, a squash may need to merge nodes. The �lter
and squash calls on lines 4-6 remove the physics and hypre nodes
from the graph, but main must now connect to both psm2 nodes.
In a calling context tree, a node cannot have two children with
identical frames, so we merge the psm2 nodes together. The graph
now represents only the time spent in psm2 when called directly
or transitively from main. As mentioned earlier, node merging can
convert a tree into a graph. Squash and other Hatchet API calls are
general and handle both trees and graphs.

A squash operation creates a new DataFrame in addition to the
new graph. The new DataFrame contains all rows from the original
DataFrame, but its index points to nodes in the new graph. Addi-
tionally, a squash operation will make the values in all columns
containing inclusive metrics inaccurate, since the parent-child re-
lationships have changed. Hence, the squash operation also calls
update_inclusive_columns to make all inclusive columns in the
DataFrame accurate again.

equal: This checks whether two graphs have the same nodes and
edge connectivity when traversing from their roots. If they are
equivalent, it returns true, otherwise it returns false.

union: The union function takes two graphs and creates a uni�ed
graph, preserving all edges structure of the original graphs, and
merging nodes with identical context. When Hatchet performs bi-
nary operations on two GraphFrames with unequal graphs, a union
is performed beforehand to ensure that the graphs are structurally
equivalent. This ensures that operands to element-wise operations
like add and subtract, can be aligned by their respective nodes.

4.3 GraphFrame Operations

copy: The copy operation returns a shallow copy of a GraphFrame.
It creates a new GraphFrame with a copy of the original Graph-
Frame’s DataFrame, but the same graph. As mentioned earlier,
graphs in Hatchet use immutable semantics, and they are copied
only when they need to be restructured. This property allows us to
reuse graphs from GraphFrame to GraphFrame if the operations
performed on the GraphFrame do not mutate the graph.

unify: Similar to union on graphs, unify operates on GraphFrames.
It calls union on the two graphs, and then reindexes the DataFrames
in both GraphFrames to be indexed by the nodes in the uni�ed
graph. Binary operations on GraphFrames call unify which in turn
calls union on the respective graphs.

add: Assuming the graphs in two GraphFrames are equal, the add
(+) operation computes the element-wise sum of two DataFrames.
In the case where the two graphs are not identical, unify (described
above) is applied �rst to create a uni�ed graph before performing
the sum. The DataFrames are copied and reindexed by the combined
graph, and the add operation returns new GraphFrame with the
result of adding these DataFrames. Hatchet also provides an in-place
version of the add operator: + =.

subtract: The subtract operation is similar to the add operation in
that it requires the two graphs to be identical. It applies union and
reindexes DataFrames if necessary. Once the graphs are uni�ed, the
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subtract operation computes the element-wise di�erence between
the two DataFrames. The subtract operation returns a new Graph-
Frame, or it modi�es one of the GraphFrames in place in the case
of the in-place subtraction (� =). Figure 6 shows the subtraction
of one GraphFrame from another and the graph for the resulting
GraphFrame.

4.4 Visualizing Output
Hatchet provides its own visualization as well as support for two
other visualizations of the structured data stored in the graph object.
The native visualization in Hatchet is a string that can be printed
to the terminal to display the graph. Hatchet can also output the
graph in the DOT format or a folded stack used by �ame graph [8].

The dot utility in Graphviz produces a hierarchical drawing of
directed graphs, particularly useful for showing the direction of
the edges. Flame graphs are useful for quickly identifying the per-
formance bottleneck, that is the box with the largest width. The
y-axis of the �ame graph represents the call stack depth. Figure 7
shows the same Hatchet graph presented in the three supported vi-
sualizations: terminal, DOT, and �ame graph. For particularly large
graphs, these visual representations can be useful for quickly identi-
fying caller-callee relationships. However, identifying performance
bottlenecks or load imbalance might be easier in the DataFrame.

5 PERFORMANCE
It is vital that performance analysis tools have low overheads and
that they enable quick analysis of performance datasets without the
user having to wait for a long time for each operation to complete.
In Figure 8, we provide execution times for some operations in
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In some cases, a squash may need to merge nodes. The �lter
and squash calls on lines 4-6 remove the physics and hypre nodes
from the graph, but main must now connect to both psm2 nodes.
In a calling context tree, a node cannot have two children with
identical frames, so we merge the psm2 nodes together. The graph
now represents only the time spent in psm2 when called directly
or transitively from main. As mentioned earlier, node merging can
convert a tree into a graph. Squash and other Hatchet API calls are
general and handle both trees and graphs.

A squash operation creates a new DataFrame in addition to the
new graph. The new DataFrame contains all rows from the original
DataFrame, but its index points to nodes in the new graph. Addi-
tionally, a squash operation will make the values in all columns
containing inclusive metrics inaccurate, since the parent-child re-
lationships have changed. Hence, the squash operation also calls
update_inclusive_columns to make all inclusive columns in the
DataFrame accurate again.

equal: This checks whether two graphs have the same nodes and
edge connectivity when traversing from their roots. If they are
equivalent, it returns true, otherwise it returns false.

union: The union function takes two graphs and creates a uni�ed
graph, preserving all edges structure of the original graphs, and
merging nodes with identical context. When Hatchet performs bi-
nary operations on two GraphFrames with unequal graphs, a union
is performed beforehand to ensure that the graphs are structurally
equivalent. This ensures that operands to element-wise operations
like add and subtract, can be aligned by their respective nodes.

4.3 GraphFrame Operations

copy: The copy operation returns a shallow copy of a GraphFrame.
It creates a new GraphFrame with a copy of the original Graph-
Frame’s DataFrame, but the same graph. As mentioned earlier,
graphs in Hatchet use immutable semantics, and they are copied
only when they need to be restructured. This property allows us to
reuse graphs from GraphFrame to GraphFrame if the operations
performed on the GraphFrame do not mutate the graph.

unify: Similar to union on graphs, unify operates on GraphFrames.
It calls union on the two graphs, and then reindexes the DataFrames
in both GraphFrames to be indexed by the nodes in the uni�ed
graph. Binary operations on GraphFrames call unify which in turn
calls union on the respective graphs.

add: Assuming the graphs in two GraphFrames are equal, the add
(+) operation computes the element-wise sum of two DataFrames.
In the case where the two graphs are not identical, unify (described
above) is applied �rst to create a uni�ed graph before performing
the sum. The DataFrames are copied and reindexed by the combined
graph, and the add operation returns new GraphFrame with the
result of adding these DataFrames. Hatchet also provides an in-place
version of the add operator: + =.

subtract: The subtract operation is similar to the add operation in
that it requires the two graphs to be identical. It applies union and
reindexes DataFrames if necessary. Once the graphs are uni�ed, the
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ing graph at the bottom).

subtract operation computes the element-wise di�erence between
the two DataFrames. The subtract operation returns a new Graph-
Frame, or it modi�es one of the GraphFrames in place in the case
of the in-place subtraction (� =). Figure 6 shows the subtraction
of one GraphFrame from another and the graph for the resulting
GraphFrame.

4.4 Visualizing Output
Hatchet provides its own visualization as well as support for two
other visualizations of the structured data stored in the graph object.
The native visualization in Hatchet is a string that can be printed
to the terminal to display the graph. Hatchet can also output the
graph in the DOT format or a folded stack used by �ame graph [8].

The dot utility in Graphviz produces a hierarchical drawing of
directed graphs, particularly useful for showing the direction of
the edges. Flame graphs are useful for quickly identifying the per-
formance bottleneck, that is the box with the largest width. The
y-axis of the �ame graph represents the call stack depth. Figure 7
shows the same Hatchet graph presented in the three supported vi-
sualizations: terminal, DOT, and �ame graph. For particularly large
graphs, these visual representations can be useful for quickly identi-
fying caller-callee relationships. However, identifying performance
bottlenecks or load imbalance might be easier in the DataFrame.

5 PERFORMANCE
It is vital that performance analysis tools have low overheads and
that they enable quick analysis of performance datasets without the
user having to wait for a long time for each operation to complete.
In Figure 8, we provide execution times for some operations in
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In some cases, a squash may need to merge nodes. The �lter
and squash calls on lines 4-6 remove the physics and hypre nodes
from the graph, but main must now connect to both psm2 nodes.
In a calling context tree, a node cannot have two children with
identical frames, so we merge the psm2 nodes together. The graph
now represents only the time spent in psm2 when called directly
or transitively from main. As mentioned earlier, node merging can
convert a tree into a graph. Squash and other Hatchet API calls are
general and handle both trees and graphs.

A squash operation creates a new DataFrame in addition to the
new graph. The new DataFrame contains all rows from the original
DataFrame, but its index points to nodes in the new graph. Addi-
tionally, a squash operation will make the values in all columns
containing inclusive metrics inaccurate, since the parent-child re-
lationships have changed. Hence, the squash operation also calls
update_inclusive_columns to make all inclusive columns in the
DataFrame accurate again.

equal: This checks whether two graphs have the same nodes and
edge connectivity when traversing from their roots. If they are
equivalent, it returns true, otherwise it returns false.

union: The union function takes two graphs and creates a uni�ed
graph, preserving all edges structure of the original graphs, and
merging nodes with identical context. When Hatchet performs bi-
nary operations on two GraphFrames with unequal graphs, a union
is performed beforehand to ensure that the graphs are structurally
equivalent. This ensures that operands to element-wise operations
like add and subtract, can be aligned by their respective nodes.

4.3 GraphFrame Operations

copy: The copy operation returns a shallow copy of a GraphFrame.
It creates a new GraphFrame with a copy of the original Graph-
Frame’s DataFrame, but the same graph. As mentioned earlier,
graphs in Hatchet use immutable semantics, and they are copied
only when they need to be restructured. This property allows us to
reuse graphs from GraphFrame to GraphFrame if the operations
performed on the GraphFrame do not mutate the graph.

unify: Similar to union on graphs, unify operates on GraphFrames.
It calls union on the two graphs, and then reindexes the DataFrames
in both GraphFrames to be indexed by the nodes in the uni�ed
graph. Binary operations on GraphFrames call unify which in turn
calls union on the respective graphs.

add: Assuming the graphs in two GraphFrames are equal, the add
(+) operation computes the element-wise sum of two DataFrames.
In the case where the two graphs are not identical, unify (described
above) is applied �rst to create a uni�ed graph before performing
the sum. The DataFrames are copied and reindexed by the combined
graph, and the add operation returns new GraphFrame with the
result of adding these DataFrames. Hatchet also provides an in-place
version of the add operator: + =.

subtract: The subtract operation is similar to the add operation in
that it requires the two graphs to be identical. It applies union and
reindexes DataFrames if necessary. Once the graphs are uni�ed, the
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ing graph at the bottom).

subtract operation computes the element-wise di�erence between
the two DataFrames. The subtract operation returns a new Graph-
Frame, or it modi�es one of the GraphFrames in place in the case
of the in-place subtraction (� =). Figure 6 shows the subtraction
of one GraphFrame from another and the graph for the resulting
GraphFrame.

4.4 Visualizing Output
Hatchet provides its own visualization as well as support for two
other visualizations of the structured data stored in the graph object.
The native visualization in Hatchet is a string that can be printed
to the terminal to display the graph. Hatchet can also output the
graph in the DOT format or a folded stack used by �ame graph [8].

The dot utility in Graphviz produces a hierarchical drawing of
directed graphs, particularly useful for showing the direction of
the edges. Flame graphs are useful for quickly identifying the per-
formance bottleneck, that is the box with the largest width. The
y-axis of the �ame graph represents the call stack depth. Figure 7
shows the same Hatchet graph presented in the three supported vi-
sualizations: terminal, DOT, and �ame graph. For particularly large
graphs, these visual representations can be useful for quickly identi-
fying caller-callee relationships. However, identifying performance
bottlenecks or load imbalance might be easier in the DataFrame.

5 PERFORMANCE
It is vital that performance analysis tools have low overheads and
that they enable quick analysis of performance datasets without the
user having to wait for a long time for each operation to complete.
In Figure 8, we provide execution times for some operations in
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In some cases, a squash may need to merge nodes. The �lter
and squash calls on lines 4-6 remove the physics and hypre nodes
from the graph, but main must now connect to both psm2 nodes.
In a calling context tree, a node cannot have two children with
identical frames, so we merge the psm2 nodes together. The graph
now represents only the time spent in psm2 when called directly
or transitively from main. As mentioned earlier, node merging can
convert a tree into a graph. Squash and other Hatchet API calls are
general and handle both trees and graphs.

A squash operation creates a new DataFrame in addition to the
new graph. The new DataFrame contains all rows from the original
DataFrame, but its index points to nodes in the new graph. Addi-
tionally, a squash operation will make the values in all columns
containing inclusive metrics inaccurate, since the parent-child re-
lationships have changed. Hence, the squash operation also calls
update_inclusive_columns to make all inclusive columns in the
DataFrame accurate again.

equal: This checks whether two graphs have the same nodes and
edge connectivity when traversing from their roots. If they are
equivalent, it returns true, otherwise it returns false.

union: The union function takes two graphs and creates a uni�ed
graph, preserving all edges structure of the original graphs, and
merging nodes with identical context. When Hatchet performs bi-
nary operations on two GraphFrames with unequal graphs, a union
is performed beforehand to ensure that the graphs are structurally
equivalent. This ensures that operands to element-wise operations
like add and subtract, can be aligned by their respective nodes.

4.3 GraphFrame Operations

copy: The copy operation returns a shallow copy of a GraphFrame.
It creates a new GraphFrame with a copy of the original Graph-
Frame’s DataFrame, but the same graph. As mentioned earlier,
graphs in Hatchet use immutable semantics, and they are copied
only when they need to be restructured. This property allows us to
reuse graphs from GraphFrame to GraphFrame if the operations
performed on the GraphFrame do not mutate the graph.

unify: Similar to union on graphs, unify operates on GraphFrames.
It calls union on the two graphs, and then reindexes the DataFrames
in both GraphFrames to be indexed by the nodes in the uni�ed
graph. Binary operations on GraphFrames call unify which in turn
calls union on the respective graphs.

add: Assuming the graphs in two GraphFrames are equal, the add
(+) operation computes the element-wise sum of two DataFrames.
In the case where the two graphs are not identical, unify (described
above) is applied �rst to create a uni�ed graph before performing
the sum. The DataFrames are copied and reindexed by the combined
graph, and the add operation returns new GraphFrame with the
result of adding these DataFrames. Hatchet also provides an in-place
version of the add operator: + =.

subtract: The subtract operation is similar to the add operation in
that it requires the two graphs to be identical. It applies union and
reindexes DataFrames if necessary. Once the graphs are uni�ed, the
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subtract operation computes the element-wise di�erence between
the two DataFrames. The subtract operation returns a new Graph-
Frame, or it modi�es one of the GraphFrames in place in the case
of the in-place subtraction (� =). Figure 6 shows the subtraction
of one GraphFrame from another and the graph for the resulting
GraphFrame.

4.4 Visualizing Output
Hatchet provides its own visualization as well as support for two
other visualizations of the structured data stored in the graph object.
The native visualization in Hatchet is a string that can be printed
to the terminal to display the graph. Hatchet can also output the
graph in the DOT format or a folded stack used by �ame graph [8].

The dot utility in Graphviz produces a hierarchical drawing of
directed graphs, particularly useful for showing the direction of
the edges. Flame graphs are useful for quickly identifying the per-
formance bottleneck, that is the box with the largest width. The
y-axis of the �ame graph represents the call stack depth. Figure 7
shows the same Hatchet graph presented in the three supported vi-
sualizations: terminal, DOT, and �ame graph. For particularly large
graphs, these visual representations can be useful for quickly identi-
fying caller-callee relationships. However, identifying performance
bottlenecks or load imbalance might be easier in the DataFrame.

5 PERFORMANCE
It is vital that performance analysis tools have low overheads and
that they enable quick analysis of performance datasets without the
user having to wait for a long time for each operation to complete.
In Figure 8, we provide execution times for some operations in
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In some cases, a squash may need to merge nodes. The �lter
and squash calls on lines 4-6 remove the physics and hypre nodes
from the graph, but main must now connect to both psm2 nodes.
In a calling context tree, a node cannot have two children with
identical frames, so we merge the psm2 nodes together. The graph
now represents only the time spent in psm2 when called directly
or transitively from main. As mentioned earlier, node merging can
convert a tree into a graph. Squash and other Hatchet API calls are
general and handle both trees and graphs.

A squash operation creates a new DataFrame in addition to the
new graph. The new DataFrame contains all rows from the original
DataFrame, but its index points to nodes in the new graph. Addi-
tionally, a squash operation will make the values in all columns
containing inclusive metrics inaccurate, since the parent-child re-
lationships have changed. Hence, the squash operation also calls
update_inclusive_columns to make all inclusive columns in the
DataFrame accurate again.

equal: This checks whether two graphs have the same nodes and
edge connectivity when traversing from their roots. If they are
equivalent, it returns true, otherwise it returns false.

union: The union function takes two graphs and creates a uni�ed
graph, preserving all edges structure of the original graphs, and
merging nodes with identical context. When Hatchet performs bi-
nary operations on two GraphFrames with unequal graphs, a union
is performed beforehand to ensure that the graphs are structurally
equivalent. This ensures that operands to element-wise operations
like add and subtract, can be aligned by their respective nodes.

4.3 GraphFrame Operations

copy: The copy operation returns a shallow copy of a GraphFrame.
It creates a new GraphFrame with a copy of the original Graph-
Frame’s DataFrame, but the same graph. As mentioned earlier,
graphs in Hatchet use immutable semantics, and they are copied
only when they need to be restructured. This property allows us to
reuse graphs from GraphFrame to GraphFrame if the operations
performed on the GraphFrame do not mutate the graph.

unify: Similar to union on graphs, unify operates on GraphFrames.
It calls union on the two graphs, and then reindexes the DataFrames
in both GraphFrames to be indexed by the nodes in the uni�ed
graph. Binary operations on GraphFrames call unify which in turn
calls union on the respective graphs.

add: Assuming the graphs in two GraphFrames are equal, the add
(+) operation computes the element-wise sum of two DataFrames.
In the case where the two graphs are not identical, unify (described
above) is applied �rst to create a uni�ed graph before performing
the sum. The DataFrames are copied and reindexed by the combined
graph, and the add operation returns new GraphFrame with the
result of adding these DataFrames. Hatchet also provides an in-place
version of the add operator: + =.

subtract: The subtract operation is similar to the add operation in
that it requires the two graphs to be identical. It applies union and
reindexes DataFrames if necessary. Once the graphs are uni�ed, the
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subtract operation computes the element-wise di�erence between
the two DataFrames. The subtract operation returns a new Graph-
Frame, or it modi�es one of the GraphFrames in place in the case
of the in-place subtraction (� =). Figure 6 shows the subtraction
of one GraphFrame from another and the graph for the resulting
GraphFrame.

4.4 Visualizing Output
Hatchet provides its own visualization as well as support for two
other visualizations of the structured data stored in the graph object.
The native visualization in Hatchet is a string that can be printed
to the terminal to display the graph. Hatchet can also output the
graph in the DOT format or a folded stack used by �ame graph [8].

The dot utility in Graphviz produces a hierarchical drawing of
directed graphs, particularly useful for showing the direction of
the edges. Flame graphs are useful for quickly identifying the per-
formance bottleneck, that is the box with the largest width. The
y-axis of the �ame graph represents the call stack depth. Figure 7
shows the same Hatchet graph presented in the three supported vi-
sualizations: terminal, DOT, and �ame graph. For particularly large
graphs, these visual representations can be useful for quickly identi-
fying caller-callee relationships. However, identifying performance
bottlenecks or load imbalance might be easier in the DataFrame.

5 PERFORMANCE
It is vital that performance analysis tools have low overheads and
that they enable quick analysis of performance datasets without the
user having to wait for a long time for each operation to complete.
In Figure 8, we provide execution times for some operations in
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1 gf1 = GraphFrame ()

2 gf1.from_caliper(�lulesh -1core.json�)

3

4 gf2 = GraphFrame ()

5 gf2.from_caliper(�lulesh -27 cores.json�)

6 gf2.drop_index_levels ()

7

8 gf3 = gf2 - gf1

Figure 10: The subtract operation in Hatchet enables comparing execution pro�les. In this �gure, the left graph is subtracted
from the middle graph to obtain the right graph. When we sort the nodes in the right graph by time, we can easily identify
the biggest o�enders.

1 gf1 = GraphFrame ()

2 gf1.from_caliper(�lulesh -512 cores�)

3

4 gf2 = gf1.copy()

5

6 gf1.drop_index_levels(function=np.mean)

7 gf2.drop_index_levels(function=np.max)

8

9 gf1.dataframe[�imbalance �]

10 = gf2.dataframe[�time�].div(gf1.dataframe[�time�])

Figure 11: Load imbalance within a single execution is de-
rived by calculating themean andmaximumvalues of amet-
ric at each node across all MPI processes or threads and then
dividing the two values for each node.

a programmable interface for dealing with raw, structured pro�le
data from parallel runs. Users must point and click to analyze the
data, which can be time consuming and in�exible for large datasets
or custom analyses.

Many performance tools provide facilities to store performance
data in a database and to applymachine learning and other data anal-
ysis tools to it. PerfExplorer [11] provides a database, a GUI analysis

environment, and the PerfDMF [10] data format. Open|SpeedShop
has an internal SQL database used by the GUI to load parts of
performance datasets. However, all of these tools predate the popu-
larization of data analysis frameworks like R [19] and pandas [16],
and they do not provide rich APIs for manipulating data. TauDB,
part of PerfDMF, provides language bindings for exploring datasets,
but it does not provide the in-memory query or aggregation capa-
bilities that modern frameworks have. All “queries” in these tools
must be written in SQL, with a �xed schema, and handed o� directly
to the backend database. There is no in-memory dataframe or ab-
straction layer as we have leveraged in Hatchet. The closest related
work to Hatchet is likely di�erential pro�ling. Early work [14, 20]
showed the utility of subtracting similar or scaled call trees to
pinpoint performance issues. This work was improved upon by
techniques for scaling analysis implemented in HPCToolkit [23, 24].
HPCToolkit provides facilities for calculating derived expressions
from performance metrics on call trees within the GUI, and this
can be used to scale and subtract columns in the hpcviewer GUI.
However, the usage model is cell-based like a spreadsheet; it is not
fully programmable or easily integrated with other frameworks.

Likely the most scalable existing call path visualizer is HPCTrace-
Viewer [22], which provides visualizations of call paths over time,
MPI ranks, and threads in parallel codes. This tool and Libra [6]
are the closest analogs to the per-MPI-rank analyses in this pa-
per. Again, though, these are GUI tools and they do not provide
the �exibility to easily script new analyses or to easily query, �l-
ter, aggregate, and squash pro�le data in an indexed dataframe as
Hatchet does. Typically, the available analyses are manually se-
lected through drop down menus or some other user-interface, and
there is limited �exibility for customization.
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1 gf1 = GraphFrame ()

2 gf1.from_caliper(�lulesh -27 cores�)

3

4 gf2 = GraphFrame ()

5 gf2.from_caliper(�lulesh -512 cores�)

6

7 filtered_gf1

8 = gf1.filter(lambda x: x[�name�]. startswith(�MPI�))

9 filtered_gf2

10 = gf2.filter(lambda x: x[�name�]. startswith(�MPI�))

11

12 squashed_gf1 = filtered_gf1.squash ()

13 squashed_gf2 = filtered_gf2.squash ()

14

15 diff_gf = squashed_gf2 - squashed_gf1

Figure 12: Hatchet makes it easy to extract the calls in a particular library, MPI for example using the �lter operation, and
then to compare the extracted sub-graphs using the subtract operation. In the example above, we can easily identify which
speci�c MPI_Send calls take more time when we scale from 27 to 512 cores.

1 datasets = glob.glob(�lulesh *.json�)

2 datasets.sort()

3

4 dataframes = []

5 for dataset in datasets:

6 gf = GraphFrame ()

7 gf.from_caliper(dataset)

8 gf.drop_index_levels ()

9

10 num_pes = re.match(�(.*) -(\d+)(.*)�, dataset).group (2)

11 gf.dataframe[�pes�] = num_pes

12 filtered_gf = gf.filter(lambda x: x[�time�] > 1e6)

13 dataframes.append(filtered_gf.dataframe)

14

15 result = pd.concat(dataframes)

16 pivot_df = result.pivot(index=�pes�, columns=�name�, values

=�time�)

17 pivot_df.loc [: ,:]. plot.bar(stacked=True , figsize =(10 ,7))

Figure 13: We read in eight LULESH caliper datasets in a for loop and create a graphframe for each. We then �lter the datasets
to focus on the most time-consuming regions. For plotting, we concatenate all the dataframes into one while storing a key
that identi�es the number of processes, and then use pivot to rearrange the data in a format more suitable for pandas’ plot
function. The resulting stacked bar chart is shown on the right.

With Hatchet, we provide a common data model for representing
structured pro�les from today’s HPC tools. We provide a means to
index a dataframe by structured attributes, such as nodes in a call
tree or call graph, andHatchet builds on thewidely used pandas data
analysis framework, and all of the plotting and analysis libraries
that can be used with it. Hatchet is not a closed-universe tool; it
provides a canonical representation of pro�le data and can read
data from many existing tools. If Hatchet users need to analyze data
from a new measurement tool, they can do so without modifying
their analysis scripts, and without learning a new format, new API,
or new GUI. We advocate the use of existing measurement tools
with Hatchet for analysis, in order to achieve more automated,
reproducible results.

8 CONCLUSION
Analyzing performance and connecting performance degradation
to parts of the code is important to guide application developers in
their performance optimization e�orts. Large parallel applications
with tens to thousands of lines of codes are di�cult to analyze.

Additionally, performance pro�les of such applications can have
hundreds of thousands of call sites or nodes in a dynamic exe-
cution pro�le. Most existing tools fall short in allowing users to
programmatically analyze performance data.

In this paper, we presented Hatchet, a Python-based library
leveraging the powerful API of data analysis tools, such as pandas
to analyze structured pro�ling data. Since pandas does not support
structured data indexed by nodes in a graph, Hatchet provides a
hierarchical index to support indexing dataframe rows by nodes in
the graph. Hatchet provides a canonical data model that enables
representing and analyzing di�erent types of performance data.

Leveraging many dataframe operations and adding its own,
Hatchet simpli�es many common performance analysis tasks on
structured pro�ling data. Using case studies, we demonstrated that
Hatchet provides an easy way to perform many complex tasks on
parallel pro�les by writing a few lines of code. These tasks include,
1) identifying regions or call sites with the most load imbalance
across MPI processes or threads, 2) �ltering datasets by a metric
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Figure 12: Hatchet makes it easy to extract the calls in a particular library, MPI for example using the �lter operation, and
then to compare the extracted sub-graphs using the subtract operation. In the example above, we can easily identify which
speci�c MPI_Send calls take more time when we scale from 27 to 512 cores.
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14
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=�time�)

17 pivot_df.loc [:,:]. plot.bar(stacked=True , figsize =(10 ,7))

Figure 13: We read in eight LULESH caliper datasets in a for loop and create a graphframe for each. We then �lter the datasets
to focus on the most time-consuming regions. For plotting, we concatenate all the dataframes into one while storing a key
that identi�es the number of processes, and then use pivot to rearrange the data in a format more suitable for pandas’ plot
function. The resulting stacked bar chart is shown on the right.

With Hatchet, we provide a common data model for representing
structured pro�les from today’s HPC tools. We provide a means to
index a dataframe by structured attributes, such as nodes in a call
tree or call graph, andHatchet builds on thewidely used pandas data
analysis framework, and all of the plotting and analysis libraries
that can be used with it. Hatchet is not a closed-universe tool; it
provides a canonical representation of pro�le data and can read
data from many existing tools. If Hatchet users need to analyze data
from a new measurement tool, they can do so without modifying
their analysis scripts, and without learning a new format, new API,
or new GUI. We advocate the use of existing measurement tools
with Hatchet for analysis, in order to achieve more automated,
reproducible results.

8 CONCLUSION
Analyzing performance and connecting performance degradation
to parts of the code is important to guide application developers in
their performance optimization e�orts. Large parallel applications
with tens to thousands of lines of codes are di�cult to analyze.

Additionally, performance pro�les of such applications can have
hundreds of thousands of call sites or nodes in a dynamic exe-
cution pro�le. Most existing tools fall short in allowing users to
programmatically analyze performance data.

In this paper, we presented Hatchet, a Python-based library
leveraging the powerful API of data analysis tools, such as pandas
to analyze structured pro�ling data. Since pandas does not support
structured data indexed by nodes in a graph, Hatchet provides a
hierarchical index to support indexing dataframe rows by nodes in
the graph. Hatchet provides a canonical data model that enables
representing and analyzing di�erent types of performance data.

Leveraging many dataframe operations and adding its own,
Hatchet simpli�es many common performance analysis tasks on
structured pro�ling data. Using case studies, we demonstrated that
Hatchet provides an easy way to perform many complex tasks on
parallel pro�les by writing a few lines of code. These tasks include,
1) identifying regions or call sites with the most load imbalance
across MPI processes or threads, 2) �ltering datasets by a metric
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check_equivalence: This checks whether two graphs are exactly
equivalent or not in their structures by comparing the call paths
of the respective children. If they are equivalent, it returns true,
otherwise it returns false.

union: The union function takes two graphs and creates a uni�ed
graph, preserving as much structure of the original graphs as pos-
sible. Typically, a union is called if the structures of two graphs
are di�erent. This operation is useful when we wish to perform an
add or subtract operation on two graphframes and the graphs are
not structurally equivalent. In this case, a union is performed �rst
before the add or subtract operation.

4.3 Graphframe Operations

copy: The copy operation returns a copy of a graphframe by creat-
ing a copy of the dataframe object and the graph object, which in
turn involves cloning all the nodes in the graph. Creating a copy
enables the user to modify a copy of the graphframe object, while
keeping the original object unchanged. This is useful for example,
in the case of add and subtract, when there are two operands and
the result needs to return a new graphframe.

add: Assuming the graphs in two graphframes are identical (i.e.,
check_equivalence returns true), the add operation computes
the sum of two dataframes column-wise. In the case where the
two graphs are not identical, union (described above) is applied
�rst to create a uni�ed graph before performing the sum. The
add operation returns a new resulting graphframe or modi�es one
of the graphframes in place in the case of the following addition
assignment: (a+ = b).

subtract: The subtract operation is similar to the add operation
in that it requires the two graphs to be identical. Once the graphs
are structurally equivalent, the subtract operation computes the
di�erence between the two dataframes column-wise. The subtract
operation returns a new resulting graphframe or modi�es one of
the graphframes in place in the case of the subtraction assignment
(a� = b). Figure 6 shows the subtraction of one graphframe from
another and the graph for the resulting graphframe.

4.4 Visualizing Output
Hatchet provides its own visualization as well as support for two
other visualizations of the structured data stored in the graph object.
The native visualization in Hatchet is a string that can be printed
to the terminal to display the graph. Hatchet can also output the
graph in the DOT format or a folded stack used by �ame graph [8].

The dot utility in Graphviz produces a hierarchical drawing of
directed graphs, particularly useful for showing the direction of
the edges. Flame graphs are useful for quickly identifying the per-
formance bottleneck, that is the box with the largest width. The
y-axis of the �ame graph represents the call stack depth. Figure 7
shows the same Hatchet graph presented in the three supported vi-
sualizations: terminal, DOT, and �ame graph. For particularly large
graphs, these visual representations can be useful for quickly identi-
fying caller-callee relationships. However, identifying performance
bottlenecks or load imbalance might be easier in the dataframe.

1 gf1 = GraphFrame( ... )

2 gf2 = GraphFrame( ... )

3

4 gf2 -= gf1

Figure 6: Subtraction operation on two graphframes (result-
ing graph at the bottom).
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Figure 7: Visualization outputs supported in Hatchet in-
clude terminal output (left), DOT (right), and �ame graph
(bottom).

5 PERFORMANCE
It is vital that performance analysis tools have low overheads and
that they enable quick analysis of performance datasets without the
user having to wait for a long time for each operation to complete.
In Figure 9, we provide execution times for some operations in
Hatchet when using increasingly large datasets. We ran LULESH
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The dot utility in Graphviz produces a hierarchical drawing of
directed graphs, particularly useful for showing the direction of
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check_equivalence: This checks whether two graphs are exactly
equivalent or not in their structures by comparing the call paths
of the respective children. If they are equivalent, it returns true,
otherwise it returns false.

union: The union function takes two graphs and creates a uni�ed
graph, preserving as much structure of the original graphs as pos-
sible. Typically, a union is called if the structures of two graphs
are di�erent. This operation is useful when we wish to perform an
add or subtract operation on two graphframes and the graphs are
not structurally equivalent. In this case, a union is performed �rst
before the add or subtract operation.

4.3 Graphframe Operations

copy: The copy operation returns a copy of a graphframe by creat-
ing a copy of the dataframe object and the graph object, which in
turn involves cloning all the nodes in the graph. Creating a copy
enables the user to modify a copy of the graphframe object, while
keeping the original object unchanged. This is useful for example,
in the case of add and subtract, when there are two operands and
the result needs to return a new graphframe.

add: Assuming the graphs in two graphframes are identical (i.e.,
check_equivalence returns true), the add operation computes
the sum of two dataframes column-wise. In the case where the
two graphs are not identical, union (described above) is applied
�rst to create a uni�ed graph before performing the sum. The
add operation returns a new resulting graphframe or modi�es one
of the graphframes in place in the case of the following addition
assignment: (a+ = b).

subtract: The subtract operation is similar to the add operation
in that it requires the two graphs to be identical. Once the graphs
are structurally equivalent, the subtract operation computes the
di�erence between the two dataframes column-wise. The subtract
operation returns a new resulting graphframe or modi�es one of
the graphframes in place in the case of the subtraction assignment
(a� = b). Figure 6 shows the subtraction of one graphframe from
another and the graph for the resulting graphframe.

4.4 Visualizing Output
Hatchet provides its own visualization as well as support for two
other visualizations of the structured data stored in the graph object.
The native visualization in Hatchet is a string that can be printed
to the terminal to display the graph. Hatchet can also output the
graph in the DOT format or a folded stack used by �ame graph [8].

The dot utility in Graphviz produces a hierarchical drawing of
directed graphs, particularly useful for showing the direction of
the edges. Flame graphs are useful for quickly identifying the per-
formance bottleneck, that is the box with the largest width. The
y-axis of the �ame graph represents the call stack depth. Figure 7
shows the same Hatchet graph presented in the three supported vi-
sualizations: terminal, DOT, and �ame graph. For particularly large
graphs, these visual representations can be useful for quickly identi-
fying caller-callee relationships. However, identifying performance
bottlenecks or load imbalance might be easier in the dataframe.

1 gf1 = GraphFrame( ... )

2 gf2 = GraphFrame( ... )

3

4 gf2 -= gf1

Figure 6: Subtraction operation on two graphframes (result-
ing graph at the bottom).
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check_equivalence: This checks whether two graphs are exactly
equivalent or not in their structures by comparing the call paths
of the respective children. If they are equivalent, it returns true,
otherwise it returns false.

union: The union function takes two graphs and creates a uni�ed
graph, preserving as much structure of the original graphs as pos-
sible. Typically, a union is called if the structures of two graphs
are di�erent. This operation is useful when we wish to perform an
add or subtract operation on two graphframes and the graphs are
not structurally equivalent. In this case, a union is performed �rst
before the add or subtract operation.

4.3 Graphframe Operations

copy: The copy operation returns a copy of a graphframe by creat-
ing a copy of the dataframe object and the graph object, which in
turn involves cloning all the nodes in the graph. Creating a copy
enables the user to modify a copy of the graphframe object, while
keeping the original object unchanged. This is useful for example,
in the case of add and subtract, when there are two operands and
the result needs to return a new graphframe.

add: Assuming the graphs in two graphframes are identical (i.e.,
check_equivalence returns true), the add operation computes
the sum of two dataframes column-wise. In the case where the
two graphs are not identical, union (described above) is applied
�rst to create a uni�ed graph before performing the sum. The
add operation returns a new resulting graphframe or modi�es one
of the graphframes in place in the case of the following addition
assignment: (a+ = b).

subtract: The subtract operation is similar to the add operation
in that it requires the two graphs to be identical. Once the graphs
are structurally equivalent, the subtract operation computes the
di�erence between the two dataframes column-wise. The subtract
operation returns a new resulting graphframe or modi�es one of
the graphframes in place in the case of the subtraction assignment
(a� = b). Figure 6 shows the subtraction of one graphframe from
another and the graph for the resulting graphframe.

4.4 Visualizing Output
Hatchet provides its own visualization as well as support for two
other visualizations of the structured data stored in the graph object.
The native visualization in Hatchet is a string that can be printed
to the terminal to display the graph. Hatchet can also output the
graph in the DOT format or a folded stack used by �ame graph [8].

The dot utility in Graphviz produces a hierarchical drawing of
directed graphs, particularly useful for showing the direction of
the edges. Flame graphs are useful for quickly identifying the per-
formance bottleneck, that is the box with the largest width. The
y-axis of the �ame graph represents the call stack depth. Figure 7
shows the same Hatchet graph presented in the three supported vi-
sualizations: terminal, DOT, and �ame graph. For particularly large
graphs, these visual representations can be useful for quickly identi-
fying caller-callee relationships. However, identifying performance
bottlenecks or load imbalance might be easier in the dataframe.
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4 gf2 -= gf1

Figure 6: Subtraction operation on two graphframes (result-
ing graph at the bottom).
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In Figure 9, we provide execution times for some operations in
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check_equivalence: This checks whether two graphs are exactly
equivalent or not in their structures by comparing the call paths
of the respective children. If they are equivalent, it returns true,
otherwise it returns false.

union: The union function takes two graphs and creates a uni�ed
graph, preserving as much structure of the original graphs as pos-
sible. Typically, a union is called if the structures of two graphs
are di�erent. This operation is useful when we wish to perform an
add or subtract operation on two graphframes and the graphs are
not structurally equivalent. In this case, a union is performed �rst
before the add or subtract operation.

4.3 Graphframe Operations

copy: The copy operation returns a copy of a graphframe by creat-
ing a copy of the dataframe object and the graph object, which in
turn involves cloning all the nodes in the graph. Creating a copy
enables the user to modify a copy of the graphframe object, while
keeping the original object unchanged. This is useful for example,
in the case of add and subtract, when there are two operands and
the result needs to return a new graphframe.

add: Assuming the graphs in two graphframes are identical (i.e.,
check_equivalence returns true), the add operation computes
the sum of two dataframes column-wise. In the case where the
two graphs are not identical, union (described above) is applied
�rst to create a uni�ed graph before performing the sum. The
add operation returns a new resulting graphframe or modi�es one
of the graphframes in place in the case of the following addition
assignment: (a+ = b).

subtract: The subtract operation is similar to the add operation
in that it requires the two graphs to be identical. Once the graphs
are structurally equivalent, the subtract operation computes the
di�erence between the two dataframes column-wise. The subtract
operation returns a new resulting graphframe or modi�es one of
the graphframes in place in the case of the subtraction assignment
(a� = b). Figure 6 shows the subtraction of one graphframe from
another and the graph for the resulting graphframe.

4.4 Visualizing Output
Hatchet provides its own visualization as well as support for two
other visualizations of the structured data stored in the graph object.
The native visualization in Hatchet is a string that can be printed
to the terminal to display the graph. Hatchet can also output the
graph in the DOT format or a folded stack used by �ame graph [8].

The dot utility in Graphviz produces a hierarchical drawing of
directed graphs, particularly useful for showing the direction of
the edges. Flame graphs are useful for quickly identifying the per-
formance bottleneck, that is the box with the largest width. The
y-axis of the �ame graph represents the call stack depth. Figure 7
shows the same Hatchet graph presented in the three supported vi-
sualizations: terminal, DOT, and �ame graph. For particularly large
graphs, these visual representations can be useful for quickly identi-
fying caller-callee relationships. However, identifying performance
bottlenecks or load imbalance might be easier in the dataframe.
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Figure 6: Subtraction operation on two graphframes (result-
ing graph at the bottom).
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check_equivalence: This checks whether two graphs are exactly
equivalent or not in their structures by comparing the call paths
of the respective children. If they are equivalent, it returns true,
otherwise it returns false.

union: The union function takes two graphs and creates a uni�ed
graph, preserving as much structure of the original graphs as pos-
sible. Typically, a union is called if the structures of two graphs
are di�erent. This operation is useful when we wish to perform an
add or subtract operation on two graphframes and the graphs are
not structurally equivalent. In this case, a union is performed �rst
before the add or subtract operation.

4.3 Graphframe Operations

copy: The copy operation returns a copy of a graphframe by creat-
ing a copy of the dataframe object and the graph object, which in
turn involves cloning all the nodes in the graph. Creating a copy
enables the user to modify a copy of the graphframe object, while
keeping the original object unchanged. This is useful for example,
in the case of add and subtract, when there are two operands and
the result needs to return a new graphframe.

add: Assuming the graphs in two graphframes are identical (i.e.,
check_equivalence returns true), the add operation computes
the sum of two dataframes column-wise. In the case where the
two graphs are not identical, union (described above) is applied
�rst to create a uni�ed graph before performing the sum. The
add operation returns a new resulting graphframe or modi�es one
of the graphframes in place in the case of the following addition
assignment: (a+ = b).

subtract: The subtract operation is similar to the add operation
in that it requires the two graphs to be identical. Once the graphs
are structurally equivalent, the subtract operation computes the
di�erence between the two dataframes column-wise. The subtract
operation returns a new resulting graphframe or modi�es one of
the graphframes in place in the case of the subtraction assignment
(a� = b). Figure 6 shows the subtraction of one graphframe from
another and the graph for the resulting graphframe.

4.4 Visualizing Output
Hatchet provides its own visualization as well as support for two
other visualizations of the structured data stored in the graph object.
The native visualization in Hatchet is a string that can be printed
to the terminal to display the graph. Hatchet can also output the
graph in the DOT format or a folded stack used by �ame graph [8].

The dot utility in Graphviz produces a hierarchical drawing of
directed graphs, particularly useful for showing the direction of
the edges. Flame graphs are useful for quickly identifying the per-
formance bottleneck, that is the box with the largest width. The
y-axis of the �ame graph represents the call stack depth. Figure 7
shows the same Hatchet graph presented in the three supported vi-
sualizations: terminal, DOT, and �ame graph. For particularly large
graphs, these visual representations can be useful for quickly identi-
fying caller-callee relationships. However, identifying performance
bottlenecks or load imbalance might be easier in the dataframe.
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2 gf2 = GraphFrame( ... )
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4 gf2 -= gf1

Figure 6: Subtraction operation on two graphframes (result-
ing graph at the bottom).
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and process for each call site. This means that a given node
ID appears in the DataFrame n times, where n is the product of
the total number of execution threads ⇥ processes the profiled
application was running on. For highly parallel programs, this
can mean searching for tens of thousands of rows containing
the same parent and child ID.

This significant number of rows, with slight variations in
the metric data across threads and processes, causes Hatchet’s
DataFrame to explode in size compared to its correspond-
ing CCT. Since the pandas DataFrame is not optimized to
handle operations on very large datasets, operations such as
conditional indexing are the primary bottlenecks in Hatchet.
For each statement node in HPCToolkit’s XML data, the
conditional indexing executes twice: once for the parent and
again for the child to get the two vectors of exclusive metrics,
increasing the time spent in this slow operation.

We optimized the conditional index operation by leveraging
the structure of this data as well as opportunities to speedup
array-based operations provided by the C/Python hybrid lan-
guage, Cython [21]. We first extract the relevant columns
(i.e., exclusive metrics) from the DataFrame, pass them into a
Cython function, and exploit the structure of the data to stride
over millions of rows of data in a few iterations, locating and
updating only those rows of interest.

Hatchet’s DataFrame can be decomposed into t equal sized
sub-frames of length m, where t is the number of execution
threads ⇥ processes used to run the application and m is
the number of call sites. Since each sub-frame is sorted by
node ID, there is no need to iterate over the entire DataFrame
row-by-row. Instead, we make t strides of length m over the
metric values and subtract the children metrics from the parent
metrics at each iteration. For our largest dataset, we reduced
the number of iterations over our DataFrame (per function
call) from more than 100,000,000 to just above 30,000.

C. Evaluation of Performance Improvements
To examine the impact of our optimizations to the HPC-

Toolkit reader, we measured the runtime of Hatchet’s HPC-
Toolkit reader on a series of profiles varying in size from 999
call graph nodes and 191,808 rows in the DataFrame to 34,855
nodes and 53,537,280 rows. The HPCToolkit profiles used in
our performance study came from the case study described in
Section III-B. The smallest profile was for a Kripke execution
on 64 processes (2 nodes) and the largest was for a LAMMPS
run on 512 processes (13 nodes). The results of these trials are
presented in Fig. 8. for each read first on the unoptimized code
and again on the optimized code. Each point represents the
average performance over five trials to read in a HPCToolkit
profile of a given size (i.e., number of DataFrame rows).

Our optimizations significantly improve the performance of
Hatchet’s HPCToolkit reader. As shown in Fig. 8, the slow-
down of the pre-optimized implementation is more pronounced
with larger DataFrames, while the post-optimized code scales
linearly. For even larger datasets, the relative speedup of the
optimized HPCToolkit reader will continue to increase. For
a DataFrame containing 50,000,000 rows, the HPCToolkit

Fig. 8: Log-log plot showing performance before and after op-
timization of the HPCToolkit reader as the size of the Hatchet
DataFrame increases. The optimized HPCToolkit reader scales
significantly better compared to its unoptimized predecessor.

reader went down from six hours and fifteen minutes to two
minutes and twenty-four seconds, a reduction of two orders
of magnitude.

D. Optimizing the Unify Operation

The unify operation takes two GraphFrame objects, unifies
the graphs in them, and reindexes the DataFrames by the
nodes in the unified graph. The updated GraphFrames contain
the new unified graph (as shown in Fig. 9) and reindexed
DataFrames. The DataFrame of the GraphFrame object calling
unify contains all the nodes from both DataFrames and also
stores metadata about the origin of nodes with a column
_missing_node, which denotes that a particular node ex-
isted only in its DataFrame or in the DataFrame of the other
GraphFrame. If a node existed in both GraphFrames, then this
column is left empty.

We chose to optimize unify since it is a primary operation
in most of Hatchet’s algebraic operations, such as multiply or
add. Since these algebraic operations are critical to the unique
profiling workflow offered by this library, it is essential that
they be performant. The initial performance analysis of unify,
executed with the same profiling infrastructure introduced in
Section VI-B, reveals merit in targeting unify as a potential
bottleneck. Unifying a LAMMPS dataset with 50,000,000
rows and 34,000 nodes with another dataset of roughly equiv-
alent size takes one hour and 38 minutes. Even when unifying
smaller datasets (100,000 rows and 1,000 nodes in the CCT),
the unify operation is notably slow, consuming 30 seconds.

Unify’s runtime is dominated by the time spent updating
the DataFrames. However, in contrast to HPCToolkit, slow-
downs are spread out among several pandas library opera-
tions in Hatchet’s internal DataFrame management function,

Fig. 10: Log-log plot showing the pre- and post-optimization
performance of the unify operation as the size of the dataset
increases.

no algorithmic advantage exists like that produced by our
HPCToolkit reader optimizations.

F. Performance Improvement of Common Workflows
A simple workflow for Hatchet is depicted in Fig. 11.

In this workflow, a user reads in two HPCToolkit profiles,
perhaps collected at two different levels of concurrency or
varying the underlying MPI implementation. A user then
uses one of Hatchet’s algebraic operators to make a quick
comparison between the two runs, storing the result in a new
GraphFrame. Before doing the optimizations discussed in this
section, this program would take fourteen hours to compare
two HPCToolkit profiles collected from a large program run
on 512 ranks. After integrating the optimizations detailed in
this section, the overall runtime for analyzing large datasets
has been significantly reduced. The runtime for this workflow
has been reduced to ten minutes and thirty seconds for the
same large profiles (80⇥ improvement).

1 gf1 = GraphFrame.from_hpctoolkit( ... )
2 gf2 = GraphFrame.from_hpctoolkit( ... )
3 gf3 = gf1 - gf2

Fig. 11: Simple workflow using the Hatchet library. Two
similar HPCToolkit datasets are read in to Hatchet, and we
compute the difference in their metrics. With optimizations,
we reduced the time for executing this workflow from 14 hours
to 10 minutes and 30 seconds.

VII. RELATED WORK

There is a wide variety of profilers that can collect
call graphs or call paths for post-hoc analysis [2]–[5],

[22], [23]. Many of these profilers also provide visualiza-
tion tools for viewing calling context trees (CCT), includ-
ing Tau [4], HPCToolkit’s hpcviewer [24] and hpctrace-
viewer [25], CallFlow [26], [27], Cube GUI [28], and flame
graphs [29]. All of these profilers support their own data
format, and most visualization tools provide a custom GUI in-
terface for viewing the call path. While some tools are capable
of importing data from other tools, there is a lack of tools with
a programmable interface for automating interactions with the
profile data. With Hatchet, we develop a canonical data format
for profile data, so that data from several popular profiler tools
can be analyzed with Hatchet. Additionally, Hatchet provides
interfaces to automate the performance analysis of call path
data, so users do not have to learn new data formats or visual
interfaces.

Within the tools community, there is an effort to leverage
a database for storing data and to provide their own language
for interacting with the data. PerfExplorer [30], for example,
provides its own database, a GUI interface, and a custom data
format known as PerfDMF [31]. Similarly, Open|SpeedShop
uses an SQL database and its own GUI interface. The work
most closely related to Hatchet is differential profiling, which
demonstrated the benefits of computing the difference between
two call trees to pinpoint performance bottlenecks [32], [33].
To expand on this idea and to enable analysis of larger
profiles, Tallent et al. extended HPCToolkit to include derived
metrics [34], [35]. Since Hatchet is built upon the pandas
data analysis library [8], [10], it provides a number of data
manipulation APIs that are performant on large tabular data.

VIII. CONCLUSION AND FUTURE WORK

Analyzing performance and pinpointing bottlenecks in par-
allel programs are important to guide developers in their opti-
mization workflow. It is a significant challenge to effectively
analyze the performance of complex programs that contain
tens of thousands of lines of code, resulting in large dynamic
calling context trees or call graphs. In this paper, we provided
an overview of four different efforts to enhance Hatchet’s
usability and performance.

We introduced Hatchet’s new query language to enable
users to specify call path patterns for filtering the graph. We
demonstrated Hatchet’s new interactive visualization capabili-
ties in Jupyter, enabling users to drag and select a subtree to
filter the graph. We have also improved the functionality and
information displayed using Hatchet’s tree-to-text renderer. We
provided an overview of new APIs that have been added to
Hatchet’s analysis toolbox. Lastly, we discussed different op-
timizations to Hatchet’s existing APIs and showed significant
speedups at large scale.

In the future, we plan to add functionality to save Hatchet’s
GraphFrame to disk, enabling users to save intermediate
GraphFrames periodically throughout the analysis process.
For large datasets that may take a significant amount of
time to read in, this capability will significantly improve the
analysis workflow with Hatchet, since analysis can start from

HPCToolkit read() unify() operation
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