
Glasgow
Digital Interface Explorer

Scots Army Knife for Electronics

https://github.com/GlasgowEmbedded/glasgow

Presentation by:

Attie Grande
@attiegrande

Created & Maintained by:

@whitequark
patreon.com/whitequark

Crowd Supply & DFM by:

Piotr Esden-Tempski
@esden



Overview

• What’s the Concept, “What can I do?”

• About the I/O

• Interfaces Between Software and Gateware

• Anatomy of an Applet

• Deep Dive: Data Path & Buffer Management

• Future Plans

• Crowd Supply Campaign & DFM (Piotr / @esden)

• Questions!



What’s the Concept?

• Nono Hana from Pretty Cure
• Quote can be read as

“ [Glasgow] can do anything!
[Glasgow] can be anything! ”



What’s the Concept?

• FPGA permits real time signalling and I/O
• e.g: WS2812 LEDs (right)
• e.g: HUB75 with 64x64 framebuffer (below, WIP)



What’s the Concept?

• Connect a digital output directly to a speaker
• Socket / FIFO interface between the two
• Sigma Delta DAC in FPGA
• “High” quality audio output
• Sounds surprisingly good!
• Zero extra components required



What’s the Concept?

• JTAG / SPI / I2C interface
• VGA test pattern
• Parallel RGB capture
• Automatically detect JTAG pinout
• UART, e.g: unknown voltage and baudrate
• Many other applets already exist!

• Have an uncommon / proprietary device?
• Connect it up and write an applet!
• A PHY isn’t a hard barrier

(e.g: I’m working on a CAN add-on)



What’s the Concept?

• Designed for simplicity and robustness
• Turnkey Setup
• No requirement to learn Python / nMigen
• Easily connect to many digital interfaces
• Applets written in Python and nMigen

• Big library of existing applets
• Python runs on the computer
• nMigen runs on the FPGA

• Open Source FPGA toolchain
• Very quick, you’ll rarely wait for a build



What’s the Concept?

• SCD30 – CO2, Temperature and Humidity
• Getting started:

1. Connect 4x wires
2. Run the applet
3. … get sensor readings



What’s the Concept?

• SCD30 – CO2, Temperature and Humidity
• Getting started:

1. Connect 4x wires
2. Run the applet
3. … get sensor readings
4. … tweak the command line

--> log to InfluxDB



What’s the Concept?

• SCD30 – CO2, Temperature and Humidity
• Getting started:

1. Connect 4x wires
2. Run the applet
3. … get sensor readings
4. … tweak the command line

--> log to InfluxDB
5. … connect to Grafana …



What’s the Concept?



About the I/O

• 16x digital I/O pins, in 2x ports

• Can power & interface with many 
things without additional circuitry

• Care-free hookup

• Converts a hardware problem into a 
software problem

• You should never wonder:
• “do I trust Glasgow right now?...”



About the I/O

• Each pin has:
• I/O buffers / level shifters

• Bi-direction (not auto-dir)

• ~100 MHz signalling

• Individual 10 kΩ pull up / down

• ESD protection

• Infinite short circuit

• Can do things like Open Drain!



About the I/O

• Each pin has:
• Onboard pull resistors permit generic 

termination

• Can add easily another through-hole 
resistor in parallel using vias



About the I/O

• Each port has:
• Independent 1.8v - 5v power supplies

• Upto ~150 mA

• Infinite short circuit

• All I/Os are translated to this voltage

• Voltage sense, and monitor (36v Max)

• Voltage “mirror”

• Current sense, and trip / limit



About the Interfaces – Socket / FIFO

• Socket-like interface in Python

• FIFO interface in nMigen

• Very simple to use, but if you’re after performance, here be dragons (TBC…)



About the Interfaces – Socket / FIFO

• Ethernet is in the future plans (not yet)

• The protocol should adapt easily



About the Interfaces – Registers

• Registers for configuration and status
• Read-Write i.e: only Python can write

• Read-Only i.e: only nMigen can write

• Just like peripheral registers in an MCU



Anatomy of an Applet

• Subclass of GlasgowApplet class, consists of three phases / parts:
• Build

• Gather the command line arguments associated to the build
• Build the gateware (can be significantly different based on command line args!)

• Changes trigger a rebuild of the gateware, which is then cached

• Run
• Gather the command line arguments associated with the instance / execution
• Start up the applet in both Python and nMigen
• Changes do not trigger a rebuild of the gateware, and are thus very fast to tweak

• Interact
• Gather the command line arguments associated with the usage / user
• Make use of the exposed interfaces!
• Changes to not trigger a rebuild of the gateware



Anatomy of an Applet

• Subclass of GlasgowApplet class, consists of three phases / parts:
• Build

• Gather the command line arguments associated to the build
• Build the gateware (can be significantly different based on command line args!)

• Changes trigger a rebuild of the gateware, which is then cached

• Run
• Gather the command line arguments associated with the instance / execution
• Start up the applet in both Python and nMigen
• Changes do not trigger a rebuild of the gateware, and are thus very fast to tweak

• Interact
• Gather the command line arguments associated with the usage / user
• Make use of the exposed interfaces!
• Changes to not trigger a rebuild of the gateware

Rebuild?



Anatomy of an Applet

• Example: UART
• Auto baudrate detection

• Can present as:
• TTY – this terminal, direct I/O

• PTY – pseudo terminal / picocom

• Socket – terminal server / netcat



Anatomy of an Applet

• Example: UART
• Gateware constructed during 

build phase

• FPGA and Python linked during 
run phase

• Interface exposed during interact 
phase



Anatomy of an Applet

• Example: UART
• All of the gateware (right) is 

influenced by the nMigen and 
“build” args

• The Python code, and register 
values can be changed without a 
rebuild of the gateware



Anatomy of an Applet

• Example: UART
• Build args can significantly alter 

the gateware that is built

• e.g: don’t want Tx?
• Don’t build it!

• e.g: want slower baudrate?
• Make the counter larger



Deep Dive: Byte Stream Data Path

• Simple / low bandwidth applications can use in ignorance

• To keep the throughput up requires careful management…
• A lot of the problems are taken care of for you by the infrastructure

• One (ish?) edge case is still a hidden trap for users
• Non-obvious / deep technical explanation

• Let’s expand on that “Magic” block either side of USB…



Deep Dive: Byte Stream Data Path



Deep Dive: Byte Stream Data Path



Deep Dive: Byte Stream Data Path

• USB packet size, and polling!

• If you have a lot to say, don’t send a partial packet
• This is effectively saying “I’m done!”

• Host won’t ask again for a while

• Can make FIFO(s) overflow

• If host asks for a packet, and you have a lot to say, 
try to give a full packet!
• This is effectively saying “I have more to say!”

• Host will probably ask again more quickly

• FX2 and Glasgow FIFOs are fairly small



Deep Dive: Byte Stream Data Path



Deep Dive: Byte Stream Data Path

• Massively complex area, user doesn’t have to know about it!

• See: gateware/fx2_crossbar.py (3x screens of explanation from @whitequark!)

• FX2 has 4x FIFOs, FPGA has up to 4x FIFOs (to match)

• The crossbar coordinates transfers between these FIFOs



Deep Dive: Byte Stream Data Path

• FX2 configured for synchronous transfer, as clock follower

• 2-bit address to select the desired FX2 FIFO

• FPGA is in control



Deep Dive: Byte Stream Data Path

• I/O signals must be buffered, which adds pipelining

• When FPGA writes to FX2 FIFO, “full” flag will change late!

• FX2 signals not valid until long after the input capture of the FPGA!

• Feedback nightmare – is the FX2 FIFO full? is the FPGA FIFO empty?



Deep Dive: Byte Stream Data Path

• Different solution for IN FIFO vs OUT FIFO



Deep Dive: Byte Stream Data Path

• Solution – IN FIFOs (FPGA to PC)
• Track the FX2 FIFO level using a counter in the FPGA…

• Gives us a virtual, but perfect “full” flag

• Coordination for reset / FIFO purge, out-of-band



Deep Dive: Byte Stream Data Path

• Solution – OUT FIFOs (PC to FPGA)
• Very small FIFO in front of the main FIFO

• Absorbs any additional writes from the pipeline



Deep Dive: Byte Stream Data Path

• USB is packet-oriented, FIFOs are byte-oriented

• For IN FIFOs, the FPGA is responsible for inserting packet boundaries
• Short USB packets need to be forcibly flushed

• ZLP generated if previous packet was full, but there is no more data



Deep Dive: Byte Stream Data Path



Deep Dive: Byte Stream Data Path

• In summary…

• As you may have gathered…
• Flush timing is really important

• If you’re low bandwidth
• Just use the default, auto_flush = True

• If you’re high bandwidth
• You’ll want to set auto_flush = False

• Flush manually if / when necessary

• With careful configuration, Glasgow 
can achieve ~42 MiB/s over USB 2.0(!) 



Future Plans

• Rev C
• Will always be supported
• Does not compete with other revisions – it’s a different tool

• Rev D
• 4x ports, for 32x I/O pins
• Addons from revC will be compatible
• Planned – at least 2 years out

• Rev E
• Probably USB 3.0 and/or Ethernet
• Probably faster / low-voltage / differential interfaces (SYZYGY?)
• Planned – no ETA



Production and Campaign

• Piotr Esden-Tempski 1BitSquared

• CrowdSupply Campaign (finished but pre-orders available)

• DesignForManufacture (DFM)

• All designed in KiCad

• Parts Availability

• Footprint new JEDEC → roundrect pads

• Added case, wire harness



Who am I

 Piotr Esden-Tempski

 Founder 1BitSquared

 Open-Source Hardware

 Development boards

 Debug Tools



1BitSquared

BlackMagicProbe 

JTAG/SWD
iCEBreaker FPGA

BitMagic Logic 

Analyzer

(Sigrok)

Glasgow

Digital Interface 

Explorer

Some of the things

we make at 

1BitSquared



Batch Production

 On Whitequark’s request

 Batch Production

 Lower Cost hardware

 Economies of Scale

 Design For Manufacture (DFM)

 Logistics

 Easier access to the hardware



CrowdSupply Campaign

https://www.crowdsupply.com/1bitsquared/glasgow



Design For Manufacture

revC0&1 Designed in KiCad Stable by Marcan



Design For Manufacture

Some changes were needed for production.



Design For Manufacture

Roundrect pads
More common parts → ESD, Resistor Packs, Level shifters

Less error prone footprints → ESD Diode GND pads



Design For Manufacture

Silkscreen changes → User/Block legend vs Part designators
Added RESET/E-Stop Button → smaller EEPROM packages



Design improvements

 Power sequencing and reset

 Bank current monitoring with settable thresholds
ADC081C021 → INA233

 Over-/Under-Voltage protection

 Including specified hardware failure modes



Credits

 Whitequark → @whitequark

 Awygle → @awygle

 Marcan → @marcan42

 electronic_eel

 Many more in the #glasgow IRC channel



KiCad thoughts

 KiCad rocks!

 Collaboration through GitHub is decent but…

 Wish: dedicated proper KiCad diff tool

 Wish: web visualizer integrated into GitLab/GitHub

 Wish: more streamlined official library integration with footprint/3D 
model generators

 Wish: SVG visualization for documentation (PcbDraw)



Any Questions?!

• Find us & chat: #glasgow (freenode.net, or 1BitSquared Discord)

• Sources: https://github.com/GlasgowEmbedded/glasgow

• Get one: https://www.crowdsupply.com/1bitsquared/glasgow

• Support whitequark: https://www.patreon.com/whitequark

@whitequark @attiegrande @esden


