
Glasgow
Digital Interface Explorer

Scots Army Knife for Electronics

https://github.com/GlasgowEmbedded/glasgow

Presentation by:

Attie Grande
@attiegrande

Created & Maintained by:

@whitequark
patreon.com/whitequark

Crowd Supply & DFM by:

Piotr Esden-Tempski
@esden



Overview

• What’s the Concept, “What can I do?”

• About the I/O

• Interfaces Between Software and Gateware

• Anatomy of an Applet

• Deep Dive: Data Path & Buffer Management

• Future Plans

• Crowd Supply Campaign & DFM (Piotr / @esden)

• Questions!



What’s the Concept?

• Nono Hana from Pretty Cure
• Quote can be read as

“ [Glasgow] can do anything!
[Glasgow] can be anything! ”



What’s the Concept?

• FPGA permits real time signalling and I/O
• e.g: WS2812 LEDs (right)
• e.g: HUB75 with 64x64 framebuffer (below, WIP)



What’s the Concept?

• Connect a digital output directly to a speaker
• Socket / FIFO interface between the two
• Sigma Delta DAC in FPGA
• “High” quality audio output
• Sounds surprisingly good!
• Zero extra components required



What’s the Concept?

• JTAG / SPI / I2C interface
• VGA test pattern
• Parallel RGB capture
• Automatically detect JTAG pinout
• UART, e.g: unknown voltage and baudrate
• Many other applets already exist!

• Have an uncommon / proprietary device?
• Connect it up and write an applet!
• A PHY isn’t a hard barrier

(e.g: I’m working on a CAN add-on)



What’s the Concept?

• Designed for simplicity and robustness
• Turnkey Setup
• No requirement to learn Python / nMigen
• Easily connect to many digital interfaces
• Applets written in Python and nMigen

• Big library of existing applets
• Python runs on the computer
• nMigen runs on the FPGA

• Open Source FPGA toolchain
• Very quick, you’ll rarely wait for a build



What’s the Concept?

• SCD30 – CO2, Temperature and Humidity
• Getting started:

1. Connect 4x wires
2. Run the applet
3. … get sensor readings



What’s the Concept?

• SCD30 – CO2, Temperature and Humidity
• Getting started:

1. Connect 4x wires
2. Run the applet
3. … get sensor readings
4. … tweak the command line

--> log to InfluxDB



What’s the Concept?

• SCD30 – CO2, Temperature and Humidity
• Getting started:

1. Connect 4x wires
2. Run the applet
3. … get sensor readings
4. … tweak the command line

--> log to InfluxDB
5. … connect to Grafana …



What’s the Concept?



About the I/O

• 16x digital I/O pins, in 2x ports

• Can power & interface with many 
things without additional circuitry

• Care-free hookup

• Converts a hardware problem into a 
software problem

• You should never wonder:
• “do I trust Glasgow right now?...”



About the I/O

• Each pin has:
• I/O buffers / level shifters

• Bi-direction (not auto-dir)

• ~100 MHz signalling

• Individual 10 kΩ pull up / down

• ESD protection

• Infinite short circuit

• Can do things like Open Drain!



About the I/O

• Each pin has:
• Onboard pull resistors permit generic 

termination

• Can add easily another through-hole 
resistor in parallel using vias



About the I/O

• Each port has:
• Independent 1.8v - 5v power supplies

• Upto ~150 mA

• Infinite short circuit

• All I/Os are translated to this voltage

• Voltage sense, and monitor (36v Max)

• Voltage “mirror”

• Current sense, and trip / limit



About the Interfaces – Socket / FIFO

• Socket-like interface in Python

• FIFO interface in nMigen

• Very simple to use, but if you’re after performance, here be dragons (TBC…)



About the Interfaces – Socket / FIFO

• Ethernet is in the future plans (not yet)

• The protocol should adapt easily



About the Interfaces – Registers

• Registers for configuration and status
• Read-Write i.e: only Python can write

• Read-Only i.e: only nMigen can write

• Just like peripheral registers in an MCU



Anatomy of an Applet

• Subclass of GlasgowApplet class, consists of three phases / parts:
• Build

• Gather the command line arguments associated to the build
• Build the gateware (can be significantly different based on command line args!)

• Changes trigger a rebuild of the gateware, which is then cached

• Run
• Gather the command line arguments associated with the instance / execution
• Start up the applet in both Python and nMigen
• Changes do not trigger a rebuild of the gateware, and are thus very fast to tweak

• Interact
• Gather the command line arguments associated with the usage / user
• Make use of the exposed interfaces!
• Changes to not trigger a rebuild of the gateware



Anatomy of an Applet

• Subclass of GlasgowApplet class, consists of three phases / parts:
• Build

• Gather the command line arguments associated to the build
• Build the gateware (can be significantly different based on command line args!)

• Changes trigger a rebuild of the gateware, which is then cached

• Run
• Gather the command line arguments associated with the instance / execution
• Start up the applet in both Python and nMigen
• Changes do not trigger a rebuild of the gateware, and are thus very fast to tweak

• Interact
• Gather the command line arguments associated with the usage / user
• Make use of the exposed interfaces!
• Changes to not trigger a rebuild of the gateware

Rebuild?



Anatomy of an Applet

• Example: UART
• Auto baudrate detection

• Can present as:
• TTY – this terminal, direct I/O

• PTY – pseudo terminal / picocom

• Socket – terminal server / netcat



Anatomy of an Applet

• Example: UART
• Gateware constructed during 

build phase

• FPGA and Python linked during 
run phase

• Interface exposed during interact 
phase



Anatomy of an Applet

• Example: UART
• All of the gateware (right) is 

influenced by the nMigen and 
“build” args

• The Python code, and register 
values can be changed without a 
rebuild of the gateware



Anatomy of an Applet

• Example: UART
• Build args can significantly alter 

the gateware that is built

• e.g: don’t want Tx?
• Don’t build it!

• e.g: want slower baudrate?
• Make the counter larger



Deep Dive: Byte Stream Data Path

• Simple / low bandwidth applications can use in ignorance

• To keep the throughput up requires careful management…
• A lot of the problems are taken care of for you by the infrastructure

• One (ish?) edge case is still a hidden trap for users
• Non-obvious / deep technical explanation

• Let’s expand on that “Magic” block either side of USB…



Deep Dive: Byte Stream Data Path



Deep Dive: Byte Stream Data Path



Deep Dive: Byte Stream Data Path

• USB packet size, and polling!

• If you have a lot to say, don’t send a partial packet
• This is effectively saying “I’m done!”

• Host won’t ask again for a while

• Can make FIFO(s) overflow

• If host asks for a packet, and you have a lot to say, 
try to give a full packet!
• This is effectively saying “I have more to say!”

• Host will probably ask again more quickly

• FX2 and Glasgow FIFOs are fairly small



Deep Dive: Byte Stream Data Path



Deep Dive: Byte Stream Data Path

• Massively complex area, user doesn’t have to know about it!

• See: gateware/fx2_crossbar.py (3x screens of explanation from @whitequark!)

• FX2 has 4x FIFOs, FPGA has up to 4x FIFOs (to match)

• The crossbar coordinates transfers between these FIFOs



Deep Dive: Byte Stream Data Path

• FX2 configured for synchronous transfer, as clock follower

• 2-bit address to select the desired FX2 FIFO

• FPGA is in control



Deep Dive: Byte Stream Data Path

• I/O signals must be buffered, which adds pipelining

• When FPGA writes to FX2 FIFO, “full” flag will change late!

• FX2 signals not valid until long after the input capture of the FPGA!

• Feedback nightmare – is the FX2 FIFO full? is the FPGA FIFO empty?



Deep Dive: Byte Stream Data Path

• Different solution for IN FIFO vs OUT FIFO



Deep Dive: Byte Stream Data Path

• Solution – IN FIFOs (FPGA to PC)
• Track the FX2 FIFO level using a counter in the FPGA…

• Gives us a virtual, but perfect “full” flag

• Coordination for reset / FIFO purge, out-of-band



Deep Dive: Byte Stream Data Path

• Solution – OUT FIFOs (PC to FPGA)
• Very small FIFO in front of the main FIFO

• Absorbs any additional writes from the pipeline



Deep Dive: Byte Stream Data Path

• USB is packet-oriented, FIFOs are byte-oriented

• For IN FIFOs, the FPGA is responsible for inserting packet boundaries
• Short USB packets need to be forcibly flushed

• ZLP generated if previous packet was full, but there is no more data



Deep Dive: Byte Stream Data Path



Deep Dive: Byte Stream Data Path

• In summary…

• As you may have gathered…
• Flush timing is really important

• If you’re low bandwidth
• Just use the default, auto_flush = True

• If you’re high bandwidth
• You’ll want to set auto_flush = False

• Flush manually if / when necessary

• With careful configuration, Glasgow 
can achieve ~42 MiB/s over USB 2.0(!) 



Future Plans

• Rev C
• Will always be supported
• Does not compete with other revisions – it’s a different tool

• Rev D
• 4x ports, for 32x I/O pins
• Addons from revC will be compatible
• Planned – at least 2 years out

• Rev E
• Probably USB 3.0 and/or Ethernet
• Probably faster / low-voltage / differential interfaces (SYZYGY?)
• Planned – no ETA



Production and Campaign

• Piotr Esden-Tempski 1BitSquared

• CrowdSupply Campaign (finished but pre-orders available)

• DesignForManufacture (DFM)

• All designed in KiCad

• Parts Availability

• Footprint new JEDEC → roundrect pads

• Added case, wire harness



Who am I

 Piotr Esden-Tempski

 Founder 1BitSquared

 Open-Source Hardware

 Development boards

 Debug Tools



1BitSquared

BlackMagicProbe 

JTAG/SWD
iCEBreaker FPGA

BitMagic Logic 

Analyzer

(Sigrok)

Glasgow

Digital Interface 

Explorer

Some of the things

we make at 

1BitSquared



Batch Production

 On Whitequark’s request

 Batch Production

 Lower Cost hardware

 Economies of Scale

 Design For Manufacture (DFM)

 Logistics

 Easier access to the hardware



CrowdSupply Campaign

https://www.crowdsupply.com/1bitsquared/glasgow



Design For Manufacture

revC0&1 Designed in KiCad Stable by Marcan



Design For Manufacture

Some changes were needed for production.



Design For Manufacture

Roundrect pads
More common parts → ESD, Resistor Packs, Level shifters

Less error prone footprints → ESD Diode GND pads



Design For Manufacture

Silkscreen changes → User/Block legend vs Part designators
Added RESET/E-Stop Button → smaller EEPROM packages



Design improvements

 Power sequencing and reset

 Bank current monitoring with settable thresholds
ADC081C021 → INA233

 Over-/Under-Voltage protection

 Including specified hardware failure modes



Credits

 Whitequark → @whitequark

 Awygle → @awygle

 Marcan → @marcan42

 electronic_eel

 Many more in the #glasgow IRC channel



KiCad thoughts

 KiCad rocks!

 Collaboration through GitHub is decent but…

 Wish: dedicated proper KiCad diff tool

 Wish: web visualizer integrated into GitLab/GitHub

 Wish: more streamlined official library integration with footprint/3D 
model generators

 Wish: SVG visualization for documentation (PcbDraw)



Any Questions?!

• Find us & chat: #glasgow (freenode.net, or 1BitSquared Discord)

• Sources: https://github.com/GlasgowEmbedded/glasgow

• Get one: https://www.crowdsupply.com/1bitsquared/glasgow

• Support whitequark: https://www.patreon.com/whitequark

@whitequark @attiegrande @esden


