Improving GNU Radio
Accelerator Device Dataflow

Presented by: David Sorber

The Problem: Intro

GNU Radio is a software-defined radio (SDR) framework that uses a block-
based interface. It includes a library of processing blocks that can be
Interconnected Iin various ways to create signal processing flowgraphs.

The Problem

Although not explicitly supported, the GNU Radio block-based interface allows
signal processing blocks to offload their processing to external “accelerator”
hardware including GPUS, FPGAs, and DSPs.

>
[
o
=
<
-
—

The efficiency of data transfer to and from accelerator devices is often
suboptimal because the GNU Radio scheduler controls allocation of memory
buffers.

The Problem: Suboptimal

Many accelerator devices require dedicated memory buffers to transfer data, this
leads to the double copy problem.

"0
4
GNU Radio device DMA
buffer (input) buffer (input)

GNU Radio Block

GNU Radio device DMA
buffer (output) buffer (output)

> /

The Problem: A better way

Eliminate the double copy be allowing GNU Radio to manage “custom” (device,
DMA, etc.) buffer.

GNU
Radio/device
DMA buffer
buffer (input)

GNU Radio Block

GNU
Radio/device
DMA buffer
(output)

‘.
L2
.
.
.
.
.
.
5
L2
3
3
.
.
.
.
.
5
.
.
..
‘.

Eliminate the
double copy!

Background: Block interconnect

GR blocks are connected to create a flow graph.

. | GRBloCk |— e D

GR Block

Background: Block interconnect pt. 2

“Under the hood” a block writes its output data to a buffer. A downstream buffer
reader consumes (reads) data from the same buffer.

downstream

4) 4)

GR Bloc GR Bloc
——> lock —} lock _—>

buffer

(N . / \—[buf reader 1/
A

Background: Block interconnect pt. 3

One upstream block and feed multiple downstream blocks.

. — GR Block

-

GR Block

GR Block

Background: Block interconnect pt. 4

Each downstream block has a separate read pointer.

. et GR Block
\ _‘“ j buffer |E,-----------------------.....E

Background: Double-mapped buffers

GR circular buffers (vmcircbuf) use a very clever double mapping scheme.

user accessible mapping

mappingO mappingl

virtual memory L

physical memory T

buffer

Design: Goals and Plan

* Preserve compatibility with existing GR blocks (important!)

« Create new hardware-agnostic interface to allow users to define and use
“custom buffers”

« Work with GNU Radio development team; upstream changes

« High-level Development Plan:
* Milestonel — custom buffer interface that eliminates double copy problem

* Milestone2 — extend custom buffer interface to support device-to-device
(D2D) transfers

Design: Milestonel

« Currently working on milestonel

« 1stdraft of changes posted in early December 2020 to ngsched github repo
 https://github.com/gnuradio/gnuradio-ngsched/
« Working on next draft, changes not posted yet

« Refactor existing buffer interface and create abstraction for single mapped
buffers (complete)

« Create block buffer allocation interface (15t draft)
« Test single mapped buffer class implementation (ongoing)
« Test performance

« Test with many different devices (GPU cards, FPGA cards, embedded
hardware, etc.)

https://github.com/gnuradio/gnuradio-ngsched/

Design: burfer Abstraction

Buffer Interface

Buffer Factory e

space avallable ()
make buffer () buffer index add ()

index sub ()
allocate buffer ()

buffer _double mapped buffer_single _mapped
* Original buffer class interface e Abstraction for single mapped
using vmcircbuf buffers

* Wraps custom buffer

* Tested using regular host buffer
(i.,e. new char[size])

Design: buffer reader AbStraction

Buffer Reader Factory

Buffer Reader Interface

buffer add reader()

buffer_reader

A

items available ()

buffer _reader sm

Design: Upstream buffer allocation

4 I 4) 4 I
., =l GRBlock [Ag;';fctsd b GRBlock [..
o _ % \ % - %
Y 4 4
.-..>>
upstream buffer downstream buffer

« Blocks normally allocate their downstream buffer. Accelerated blocks also need
to allocate their upstream buffers.

« Add function to block class to selectively replace its downstream buffer:
* replace buffer (uint32 t out port, block sptr block owner)
* Callsmake buffer () with downstream block as buffer’s block owner
« Calledby flat flowgraph::connect block inputs () only if needed

Design: Single-mapped buffer

The single-mapped buffer must manage wrapping explicitly. Size alignment
between producer and downstream consumer blocks becomes important.

4) 4)
| GR Block GRBlock |

(N H / \—[buf reader 1/

buffer

.
.
*
*
‘e
»
*
‘e
.
.
.'.. ot
...* A A

The read and write granularity of the upstream and downstream blocks may be
different! This causes problems when managing wrap around case.

Design: Single-mapped buffer revisited

* It proved too difficult to determine and reconcile differing read and write
granularities for a few edge cases.

 New approach: handle misaligned wrapping cases explicitly
« Make reasonable attempt at size alignment up front

« Add explicitly callback functions, called by the scheduler (block executor),
to handle input and output blocked wrapping cases

* Added output blocked callback() tobuffer class
 Added input blocked callback () to buffer reader class

Design: Single-mapped buffer output blocked

Write granularity: 3 -~ Output blocked!
Read granularity: 1 .

_-~"RD ptr WR ptr

g Copy “to read” data back to
beginning of buffer. Adjust
T pointers. Output unblocked!

RD ptr WR ptr

Design: Single-mapped buffer input blocked

Write granularity: 1
Read granularity: 3

1)

RD ptr

f”
—”
-
>
— =

f

RD ptr

Input blocked!

Move written data down.

Copy “tail” data back to
beginning of buffer. Adjust
pointers. Input unblocked!

Design: Testing ongoing

« Testing of the single-mapped buffer implementation is ongoing
* Next draft should be available soon

Design: Buffer allocation interface

« Created simple interface for 15t draft
3 virtual functions added to the block class
 return buffer type function
« allocate buffer function
 free buffer function
« Simple interface but lacked flexibility
« Received good feedback on 15t draft asking for additional flexibility
« Working on next draft to balance simple interface while adding flexibility

Milestone2: The zerocopy future

(assume both accelerated blocks on same device)

P

GR Block

) 4

-
/

Accelerated
GR Block

e
-

A
1

-

)

_

Accelerated
GR Block

~

—0
/

Do not move data back to host!

GR Block

« Milestonel will support back-to-back accelerated blocks (for the same device)
but will require data transfer to and from the host between each

* The custom buffer concept can be extended to support device-to-device (D2D)
transfers
« Ultimately make accelerated blocks more modular

Conclusion

« Thank you for listening
« David Sorber
* ngsched: https://github.com/gnuradio/gnuradio-ngsched/

* Milestonel - work is ongoing
« Milestone2 - beginning later this year

https://github.com/gnuradio/gnuradio-ngsched/

