
Improving GNU Radio
Accelerator Device Dataflow

Presented by: David Sorber

The Problem: Intro

GNU Radio is a software-defined radio (SDR) framework that uses a block-

based interface. It includes a library of processing blocks that can be

interconnected in various ways to create signal processing flowgraphs.

The Problem

Although not explicitly supported, the GNU Radio block-based interface allows

signal processing blocks to offload their processing to external “accelerator”

hardware including GPUS, FPGAs, and DSPs.

The efficiency of data transfer to and from accelerator devices is often

suboptimal because the GNU Radio scheduler controls allocation of memory

buffers.

The Problem: Suboptimal

Many accelerator devices require dedicated memory buffers to transfer data; this

leads to the double copy problem.

GNU Radio Block

GNU Radio
buffer (input)

GNU Radio
buffer (output)

device DMA
buffer (output)

The dreaded “double
copy”!

device DMA
buffer (input)

The Problem: A better way

Eliminate the double copy be allowing GNU Radio to manage “custom” (device,

DMA, etc.) buffer.

GNU Radio Block

GNU
Radio/device
DMA buffer

buffer (input)

GNU
Radio/device
DMA buffer

(output)

Eliminate the
double copy!

Background: Block interconnect

GR blocks are connected to create a flow graph.

GR Block GR Block... ...

Background: Block interconnect pt. 2

“Under the hood” a block writes its output data to a buffer. A downstream buffer

reader consumes (reads) data from the same buffer.

GR Block GR Block... ...

buf_reader

downstream

buffer

Background: Block interconnect pt. 3

One upstream block and feed multiple downstream blocks.

GR Block

GR Block

...

...

GR Block ...

Background: Block interconnect pt. 4

Each downstream block has a separate read pointer.

GR Block

GR Block

...

...

buf_reader

GR Block

buf_reader

...

buffer

Background: Double-mapped buffers

GR circular buffers (vmcircbuf) use a very clever double mapping scheme.

user accessible mapping

physical memory

buffer

mapping0 mapping1

virtual memory

Design: Goals and Plan

• Preserve compatibility with existing GR blocks (important!)

• Create new hardware-agnostic interface to allow users to define and use

“custom buffers”

• Work with GNU Radio development team; upstream changes

• High-level Development Plan:

• Milestone1 – custom buffer interface that eliminates double copy problem

• Milestone2 – extend custom buffer interface to support device-to-device

(D2D) transfers

Design: Milestone1

• Currently working on milestone1

• 1st draft of changes posted in early December 2020 to ngsched github repo

• https://github.com/gnuradio/gnuradio-ngsched/

• Working on next draft, changes not posted yet

• Refactor existing buffer interface and create abstraction for single mapped

buffers (complete)

• Create block buffer allocation interface (1st draft)

• Test single mapped buffer class implementation (ongoing)

• Test performance

• Test with many different devices (GPU cards, FPGA cards, embedded

hardware, etc.)

https://github.com/gnuradio/gnuradio-ngsched/

Design: buffer Abstraction

buffer

buffer_double_mapped buffer_single_mapped

• Original buffer class interface
using vmcircbuf

• Abstraction for single mapped
buffers

• Wraps custom buffer

• Tested using regular host buffer
(i.e. new char[size])

space_available()

index_add()

index_sub()

allocate_buffer()

Buffer Factory

make_buffer()

Buffer Interface

Design: buffer_reader Abstraction

buffer_reader

buffer_reader_sm

items_available()

Buffer Reader Interface

buffer_add_reader()

Buffer Reader Factory

Design: Upstream buffer allocation

GR Block GR Block... ...

upstream buffer

Accelerated
GR Block

• Blocks normally allocate their downstream buffer. Accelerated blocks also need

to allocate their upstream buffers.

• Add function to block class to selectively replace its downstream buffer:

• replace_buffer(uint32_t out_port, block_sptr block_owner)

• Calls make_buffer() with downstream block as buffer’s block owner

• Called by flat_flowgraph::connect_block_inputs() only if needed

downstream buffer

Design: Single-mapped buffer

The single-mapped buffer must manage wrapping explicitly. Size alignment

between producer and downstream consumer blocks becomes important.

GR Block GR Block... ...

buf_reader

buffer

The read and write granularity of the upstream and downstream blocks may be

different! This causes problems when managing wrap around case.

Design: Single-mapped buffer revisited

• It proved too difficult to determine and reconcile differing read and write

granularities for a few edge cases.

• New approach: handle misaligned wrapping cases explicitly

• Make reasonable attempt at size alignment up front

• Add explicitly callback functions, called by the scheduler (block executor),

to handle input and output blocked wrapping cases

• Added output_blocked_callback() to buffer class

• Added input_blocked_callback() to buffer_reader class

Design: Single-mapped buffer output blocked

RD ptr WR ptr

Write granularity: 3
Read granularity: 1

RD ptr WR ptr

Output blocked!

Copy “to read” data back to
beginning of buffer. Adjust
pointers. Output unblocked!

Design: Single-mapped buffer input blocked

RD ptr

Write granularity: 1
Read granularity: 3

WR ptr

Input blocked!

WR ptr

RD ptr

RD ptr

WR ptr

Move written data down.

Copy “tail” data back to
beginning of buffer. Adjust
pointers. Input unblocked!

Design: Testing ongoing

• Testing of the single-mapped buffer implementation is ongoing

• Next draft should be available soon

Design: Buffer allocation interface

• Created simple interface for 1st draft

• 3 virtual functions added to the block class

• return buffer type function

• allocate buffer function

• free buffer function

• Simple interface but lacked flexibility

• Received good feedback on 1st draft asking for additional flexibility

• Working on next draft to balance simple interface while adding flexibility

Milestone2: The zerocopy future

• Milestone1 will support back-to-back accelerated blocks (for the same device)

but will require data transfer to and from the host between each

• The custom buffer concept can be extended to support device-to-device (D2D)

transfers

• Ultimately make accelerated blocks more modular

GR Block GR Block... ...
Accelerated

GR Block
Accelerated

GR Block

(assume both accelerated blocks on same device)

Do not move data back to host!

Conclusion

• Thank you for listening

• David Sorber

• ngsched: https://github.com/gnuradio/gnuradio-ngsched/

• Milestone1 - work is ongoing

• Milestone2 - beginning later this year

https://github.com/gnuradio/gnuradio-ngsched/

