
Bastian Bloessl
Josh Morman

FOSDEM 2021

Why Modularity?

GNU Radio already supports a modular library of blocks.

But, we are restricted to one "scheduling" implementation
and one type of buffer.

Current implementation has inherent limitations that
cannot be overcome:

- We don’t have much control how threads/blocks are
scheduled.

- CPU focused scheduling and memory model prevents
us from adequately dealing with hardware
accelerators and heterogeneous platforms.

What is "newsched"

https://github.com/gnuradio/newsched

Project started 1 year ago at the pre-FOSDEM 2020 hackfest at the ESA,
Noordwijk, Netherlands

Original Goal: A clean-slate approach to write a GNU Radio runtime that works
for humans.

Since then
- our vision and goals have broadened
- the implementation has started to take shape
- newsched aims to be the basis for a GR 4.0 runtime

https://github.com/gnuradio/newsched

Working With the Community

Picture: fred harris, “Modems”, Dec 2010, SDR’10.

Scheduler Working Group

Following the breakout session from
GRCON20, we have been meeting
periodically - ~1x/month - times and
meeting links shared via:

Chat room:
https://chat.gnuradio.org/#/room/#schedul
er:gnuradio.org

Mailing List:
https://groups.io/g/gnuradio-scheduler

Topics Covered Thus Far:
- newsched status
- Custom Buffers
- Domains
- Hierarchical Scheduling
- Scheduling Paradigms
- Blocking I/O
- OpenCPI alignment
- Benchmarking
- SDR 4.0 Design Review
- PMTs

Future Topics
- Message Port interfaces
- GPU domain scheduling
- ...

https://groups.io/g/gnuradio-scheduler

Developer Tutorial

https://mormj.github.io/newsched-tutorial/dev_tutorial/01_Intro

Steps through the components in sequence of implementation

https://mormj.github.io/newsched-tutorial/dev_tutorial/01_Intro

Core Concepts
* review for anyone who did not participate in
Scheduler Working group or GRCON breakout
session

Vision for Runtime 4.0

8

Modular GPP Scheduler

● Scheduler as plugin
● Application-specific

schedulers

Straightforward implementation of (distributed)
SDR systems that make efficient use of the

platform and its accelerators

Distributed DSP

● Setup and manage
flowgraphs that span
multiple nodes

Heterogeneous
Architectures

● Seamless integration
of accelerators (e.g.,
FPGAs, GPUs, DSPs,
SoCs)

Scheduler Hierarchies

Idea: Separation of concerns, find good abstractions (similar to network stack)

● Might not results in the theoretical/global optimum but simplifies design
and implementation. Main question: what’s the right abstraction?

Heterogeneous Archs
Scheduler

CPU Scheduler (inner)

CPU Scheduler (outer) GPU Scheduler ???

Recap: CPU Scheduler

● Init: Outer scheduler partitions blocks of flowgraph. Start one worker
thread per partition that serves the corresponding blocks.

● Loop in worker thread
○ Read inbox non-blocking (update buffer pointers, execute async message handlers)
○ Activate blocks, if they (1) made progress in last round, (2) received updates
○ If there are active blocks

■ Use inner scheduler to execute active blocks
○ Else

■ Blocking-wait until inbox receives messages

Thread

Block Block

Thread

Block BlockBlock

InboxInbox

Current Working State

Flowgraph

Structure and Terminology

Flowgraph
Monitor

blocks edges

Scheduler

blocks buffers

Scheduler

blocks buffers

threads

Q

threads

Q

Flowgraph object top level configuration
Flowgraph monitor manages start/stop/done

Logically define a flowgraph
via blocks and connections

Single Threaded Scheduler

Single actor model - waits
on queue messages

scheduler_st.cpp
- top level API

thread_wrapper.cpp
- runtime thread

graph_executor.cpp
- run_one_iteration()

buffer_management.cpp
- initializes buffers

ST Scheduler

blocks buffers

thread

QUEUE

For each block:
 Evaluate the state of buffers
 Do work
 Update buffers
 Notify other schedulers

Interface into scheduler is push_message

Multi-Threaded Scheduler

Just a bunch of ST
Schedulers connected via
"domain adapters"*

Defaults to TPB

Unless add_block_group
(vector<block_sptr>)
is called

MT Scheduler

ST Sched ST Sched
. . .

QUEUE QUEUE

push_msg
[blkid]

* The mechanism for sharing buffer pointers (or copies of data in the case of distributed connections)

blocks buffers buffers

D
A

D
A

D
A

D
A

blocks

Top Level API

Following methodology from gr-sched and associated paper

Scheduler Benchmarks

Flowgraph with nblocks copy blocks

Using 4 cores cpu shielded

No real-time scheduling

Pushing 1e9 samples through the flowgraph

NULL SRC HEAD COPY COPY NULL SNK...
nblocks

benchmarked with scripts in https://github.com/mormj/gr-bench and https://github.com/bastibl/gr-sched

Also verified optimizations are set the
same (-O2) and buffer sizes are equivalent
(half filled 32768 bytes)

https://github.com/mormj/gr-bench
https://github.com/bastibl/gr-sched

Scheduler Benchmarks

With implementation on Master (186a3f2b8)

Still not matching the performance of GR
3.9 scheduler

But the thread grouping has the intended
effect

NEEDS
INVESTIGATION

For newsched:
- nthreads=0 => TPB
- nthreads=4, blocks grouped

sequentially in
nblocks/nthreads with the
src, snk, head joining the
adjacent block groups

Custom Buffers

Interface

Buffer is associated with edge in graph

Assumption: in work(), in and out buffers are already in appropriate device
memory - e.g. should not have H2D or D2H memcpy in work()

Depending on placement of accelerated block, custom buffers need to be on
both upstream and downstream edge

cpu block accel block cpu blockaccel block cpu block

H2D D2D D2H

Interface

flowgraph->connect(src,blk1)->set_buffer(CUDA_BUFFER_ARGS_H2D)
flowgraph->connect(blk1,blk2)->set_buffer(CUDA_BUFFER_ARGS_D2D)
flowgraph->connect(blk2,blk3)->set_buffer(CUDA_BUFFER_ARGS_D2H)
flowgraph->connect(blk3,snk) // uses default buffer

flowgraph->run()

src blk1 snkblk2 blk3

Custom Buffer Benchmarks

memmodel 0: H2D, D2D, D2H
veclen is batch_size into gpu

In the gr39 case, the H2D, D2H
is done in every work() call

In the newsched case, custom
buffers call the work() function
assuming data is already
accessible by gpu (either in
device or pinned memory)

NULL SRC HEAD COPY COPY NULL SNK...
nblocks

these copy blocks running on gpu accelerator

Going Forward

Next Steps

Refactoring to achieve design goals - simplify the code base
- Nested Schedulers → Hierarchical Schedulers
- Fully utilize port objects to handle messaging

Message ports and Messaging interfaces
- Some work done with re-imagining PMTs

Review / Contribute / Get Involved

