
Tom Hacohen
FOSDEM 2021

Your End-to-End Encrypted BackendYour End-to-End Encrypted Backend

Building encrypted applications has never been easierBuilding encrypted applications has never been easier

tom@etebase.com
@TomHacohen

mailto:Tom%20Hacohen%20%3Ctom@etebase.com%3E
https://twitter.com/TomHacohen

Some BackgroundSome Background
Creator and maintainer of Etebase & EteSync
Etebase is an SDK for building end-to-end encrypted applications
EteSync is a set of end-to-end encrypted apps built using Etebase

The problem:The problem:
Our data is exposed!Our data is exposed!

Solution #1Solution #1
Self-host everything, but…Self-host everything, but…

Hosting at home is not always feasible (e.g. CGNAT)
Hosting on a VPS is still someone else's server
Requires constant security maintenance and backups
Only accessible to techies
The cloud is convenient and cheap

Solution #2Solution #2
End-to-end encrypt everything!End-to-end encrypt everything!

Common encryption misconceptionsCommon encryption misconceptions
My data is private, because:My data is private, because:

It's encrypted using 256bit TLS!
It's encrypted at rest using AES!
It's encrypted in transit and at rest!

But wait, encryption is hard…But wait, encryption is hard…
Easy to get wrong - partially solved by
How do you implement sharing? Access control?
How do you implement password changes?
How do you ensure integrity? Conflict resolution?
What about performance?

libsodium

https://libsodium.org/

Solution: Etebase!Solution: Etebase!

Key features and capabilitiesKey features and capabilities
Libraries for a variety of programming languages
Zero cryptography knowledge needed
A full revision history of all your data
Automatic data de-duplication
Easy collaboration (sharing)
And more…

Used in projects such as…Used in projects such as…

 Tasks.org

How does it work?How does it work?

Key componentsKey components
Account - a user on the Etebase server
Collection - a collection of items (e.g. a filesystem)
Item - what holds the actual data (e.g. files)
Revisions - a state of the item at a single point in time
stoken - a token representing a point in time

Data structureData structure

Account

Collection CollectionCollection

Item Item Item Item Item Item Item

AccountAccount
Main entry point for the Etebase user
login, signup, logout, and etc.
You only have one password

CollectionCollection
A collection of items
Have a unique UID
Associated metadata e.g:
name

description

Immutable CollectionType
Used to filter collections by usage

Optional content

ItemItem
Almost all of the data in Etebase is stored in items
Have a unique UID
Also have associated metadata e.g:
name

description

Optional content
Optional revision history

stokenstoken

Represents a point in time of the data
Used for efficient syncing (only sync changes)
Used for integrity checks

Multiple accounts (sharing)Multiple accounts (sharing)

Account

Collection CollectionCollection

Item Item Item Item Item Item Item

Account

Structuring the dataStructuring the data

As a full state sync protocolAs a full state sync protocol
The easiest most common way
Sync all of the data across devices
Always fetch the whole data

Use sync tokens to only fetch changes

Hierarchical item structureHierarchical item structure
When you don't want to sync all of the data

E.g. when syncing a large filesystem
Fetch items by UIDs

Let's build a note taking app!Let's build a note taking app!
Well, it's a lightning talk, so just the Etebase parts…Well, it's a lightning talk, so just the Etebase parts…

Structuring the dataStructuring the data
Use the
Collection is a notebook

Can be shared with other users
CollectionType: etebase.md.note
name: the name of the notebook

Items are notes in Markdown:
type: null
name: the title of the note

note specifications from the docs

https://docs.etebase.com/type-sepcs/notes

Signup and loginSignup and login
Signup

Login

 const etebase = await Etebase.Account.signup({
 username: "username",
 email: "email"
 }, "password", serverUrl);

 const etebase = await Etebase.Account.login("username", "password", serverUrl);

Create a notebookCreate a notebook
 const collectionManager = etebase.getCollectionManager();

 const collection = await collectionManager.create("etebase.md.note",
 {
 name: "My Notes",
 mtime: (new Date()).getTime(),
 },
 "" // Empty content
);

 // Upload the collection to server
 await collectionManager.upload(collection);

Create a noteCreate a note
 // Using the collection from earlier
 const itemManager = collectionManager.getItemManager(collection);

 // Create, encrypt and upload a new item
 const item = await itemManager.create(
 {
 name: "Shopping list",
 mtime: (new Date()).getTime(),
 },
 "- [X] Apples\n- [] Oranges", // Comes from the user
);

 // Batch upload of items (just one this time)
 await itemManager.batch([item]);

Fetching notebooksFetching notebooks
 // The stoken we got from a previous fetch
 let stoken = localStorage.getItem("stoken");
 let done = false;

 while (!done) {
 const collections = await collectionManager.list(
 "etebase.md.note", { stoken, limit: 30 });

 processChangedCollections(collections.data);

 stoken = collections.stoken;
 done = collections.done;
 }
 localStorage.setItem("stoken", stoken); // Persist stoken

Fetching notesFetching notes
 // The stoken we got from a previous fetch
 let stoken = localStorage.getItem(`stoken.${collection.uid}`);
 let done = false;

 while (!done) {
 const items = await itemManager.list({ stoken, limit: 30 });

 processChangedItems(items.data);

 stoken = items.stoken;
 done = items.done;
 }

 localStorage.setItem(`stoken.${collection.uid}`, stoken); // Persist stoken

Realtime subscriptionsRealtime subscriptions
 const itemManager = collectionManager.getItemManager(collection);

 const subscription = await itemManager.subscribeChanges((items) => {
 processChangedItems(items.data);
 localStorage.setItem(`stoken.${collection.uid}`, stoken); // Persist stoken
 });

Caching notes locallyCaching notes locally
Collections

Items

 // The cache blob is just a Uint8Array that can be saved for later use
 const cacheBlob = collectionManager.cacheSave(collection);

 // Later on we can load the object back
 const collection = collectionManager.cacheLoad(cacheBlob);

 // The cache blob is just a Uint8Array that can be saved for later use
 const cacheBlob = itemManager.cacheSave(item);

 // Later on we can load the object back
 const item = itemManager.cacheLoad(cacheBlob);

And now it's time to logout…And now it's time to logout…
await etebase.logout();

Closing wordsClosing words
Developer looking to secure user data?

Come chat with us!

Using apps that could benefit from Etebase?

Let us (and them) know!

Questions?Questions?
Etebase:
Sources:
Docs:
Chat:
EteSync:

https://www.etebase.com
https://github.com/etesync/

https://docs.etebase.com
https://www.etebase.com/community-chat/

https://www.etesync.com

https://www.etebase.com/
https://github.com/etesync/
https://docs.etebase.com/
https://www.etebase.com/community-chat/
https://www.etesync.com/

