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Abstract. Data-dependence profiling is a program-analysis technique
to discover potential parallelism in sequential programs. Contrary to
purely static dependence analysis, profiling has the advantage that it
captures only those dependences that actually occur during execution.
Lacking critical runtime information such as the value of pointers and
array indices, purely static analysis may overestimate the amount of
dependences. On the downside, dependence profiling significantly slows
down the program, not seldom prolonging execution by a factor of 100. In
this paper, we propose a hybrid approach that substantially reduces this
overhead. First, we statically identify persistent data dependences that
will appear in any execution. We then exclude the affected source-code
locations from instrumentation, allowing the profiler to skip them at run-
time and avoiding the associated overhead. At the end, we merge static
and dynamic dependences. We evaluated our approach with 38 bench-
marks from two benchmark suites and obtained a median reduction of
the profiling time by 62% across all the benchmarks.

1 Introduction

Data-dependence analysis is a prerequisite for the discovery of parallelism in
sequential programs. Traditionally, compilers such as PLUTO [1] perform it
statically with the goal of auto-parallelizing loops. However, lacking critical run-
time information such as the value of pointers and array indices, purely static
dependence analysis may overestimate the amount of dependences. This is why
auto-parallelization has not succeeded much beyond the confines of the polyhe-
dral model [2], a theoretical framework for the optimization and, in particular,
parallelization of loops that satisfy certain constraints.

Recently, many tools [3–7] emerged that avoid some of the limits of purely
static analysis. They abandon the idea of fully automatic parallelization and
instead point the user to likely parallelization opportunities, based on data
dependences captured at runtime. They counter the inherent input sensitivity
of such a dynamic approach by running the program with several representative
inputs and by providing weaker correctness guarantees, although their sugges-
tions more than often reproduce manual parallelization strategies. In addition,
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they observed that data dependences in frequently executed code regions that
are subject to parallelization do not change significantly with respect to different
inputs [4–6]. Nonetheless, high runtime overhead, caused by the need to profile
memory accesses during execution, makes them hard to use. Optimizations such
as sampling loop iterations for profiling [8], parallelizing the data-dependence
profiler itself [5,9], and skipping repeatedly executed memory operations [10]
lower the overhead only to a certain degree. To reduce the overhead more sub-
stantially, we take a fundamentally different route. Leveraging the power of prior
static dependence analysis, we exclude those memory accesses from profiling
whose data dependences can already be determined at compile time.

Overall, we follow a hybrid approach. First, we run a static analyzer, PLUTO
in our case, to identify those data dependences that every program execution
must respect. We then run the dependence profiler but refrain from instrument-
ing all memory-access instructions that correspond to these dependences, allow-
ing the profiler to skip them at runtime and avoid the associated overhead.
Furthermore, we transform all data dependences regardless of how they have
been obtained - whether statically or dynamically - into a unified representa-
tion and merge them into one output. Here, we focus on reducing the profiling
overhead. How to use the acquired data dependences to identify parallelization
potential is addressed in related work [4,5,7] and beyond the scope of this paper.
In a nutshell, we make the following specific contributions:

– A hybrid approach to the extraction of data dependences that combines the
advantages of static and dynamic techniques

– An implementation as an extension of the data-dependence profiler of
DiscoPoP [7], although our approach is generic enough to it be implemented
in any data-dependence profiler

– An evaluation with 38 programs from two benchmark suites, showing a
median reduction of the profiling time by 62%

The remainder of the paper is organized as follows. We discuss related work
in Sect. 2. Section 3 presents our approach, followed by an evaluation in Sect. 4.
Finally, we review our achievements in Sect. 5.

2 Related Work

Profiling of memory accesses is a common technique to identify data depen-
dences [4,5,7], but suffers from high runtime overhead, not seldom causing a
slowdown of a factor of 100 or more. A typical method to reduce runtime over-
head is sampling [8], although it does not apply well to data-dependence profiling.
A data dependence is made of two distinct memory accesses and omitting only
one of them is enough to miss a dependence or introduce spurious dependences.

But there are further optimizations available to lower the profiling overhead.
For example, Parwiz [4], a parallelism discovery tool, coalesces contiguous mem-
ory accesses. This lowers the profiling overhead, but only for a subset of the mem-
ory accesses. Kremlin [11], another parallelization recommender system, profiles
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data dependences only within specific code regions. To save memory overhead,
SD3 [5], a dependence profiler, compresses memory accesses with stride patterns.
Moreover, it reduces the runtime overhead by parallelizing the profiler itself. Dis-
coPoP [7] is a parallelism discovery tool that includes a generic data-dependence
profiler [9], which serves as the basis for our implementation. The original ver-
sion of the profiler converts the program into its LLVM-IR representation, after
which it instruments all memory access instructions. A runtime library tracks
the memory accesses during execution. To reduce the memory and runtime over-
head, it records memory accesses in a signature hash table. Moreover, it skips
repeatedly executed memory operations. Like SD3, it runs multiple threads to
reduce the runtime overhead further. Because of its favorable speed with an aver-
age slowdown of 86, we implemented our approach in DiscoPoP, although it is
generic enough to improve the efficiency of any profiler. The main difference to
the optimizations pursued in other tools is the hybrid combination of dynamic
and static dependence analysis.

To obtain data dependences statically, we use PLUTO [1], an auto-
parallelizing compiler for polyhedral loops. PLUTO annotates the beginning and
end of a code section containing a polyhedral loop. The annotated area is called a
SCoP (Static Control Part) and fulfills certain constraints. It has a single entry
and a single exit point and contains only (perfectly-nested) loops with affine
linear bounds [2]. With PLUTO extracting data dependences from SCoPs, we
accelerate subsequent dependence profiling by excluding memory-access oper-
ations that appear in SCoPs from instrumentation, cutting the SCoP-related
profiling overhead.

Another hybrid-analysis framework was proposed by Rus et al. [12]. It tar-
gets the automatic parallelization of loops whose parallelization is not obvious
at compile time. Based on the results of static analysis, they formulate condi-
tions and insert them into the source code. These conditions evaluate at runtime
whether a loop can be parallelized or not. In contrast to their work, our contri-
bution happens at a lower level, where we just collect data dependences, with
the goal of increasing the profiling speed.

3 Approach

Below, we explain our hybrid approach to identify data dependences. Figure 1
shows the basic workflow. Dark boxes highlight our contribution in relation to
the previously isolated static and dynamic dependence analyses. First, we extract
data dependences statically. Based on these dependences, we identify memory-
access instructions that can be eliminated from profiling. The precise elimination
algorithm is explained in Sect. 3.1. The dynamic data-dependence analysis will
then skip these instructions during the profiling process. Finally, we transform
all data dependences we have found – whether of static or dynamic origin – into
a unified representation, whose details we describe in Sect. 3.2, and merge them
into a single output file. Before we proceed to the evaluation in Sect. 4, we also
discuss the relation between the set of data dependences extracted by the hybrid
and the purely dynamic approach in Sect. 3.3.
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Algorithm 1. Exclusion of memory-access instructions from instrumenta-
tion
for each function f ∈ program do

SCoPSet = PLUTO.getSCoPs(f)
for each SCoP s ∈ SCoPSet do

varSet = getV ariables(s)
for each variable var ∈ varSet do

instrument(firstLoadInst(var,s))
instrument(lastLoadInst(var,s))
instrument(firstStoreInst(var,s))
instrument(lastStoreInst(var,s))

Fig. 1. The workflow of our hybrid data-dependence analysis. Dark boxes show our
contributions.

3.1 Reduced Instrumentation

We exclude specific memory-access instructions from instrumentation that
appear inside source code locations from which PLUTO can extract data depen-
dences statically. Algorithm 1 shows the details and can be best understood
when following the examples in Fig. 2.

We first let PLUTO annotate the target program with SCoP directives. In the
example, lines 10 and 65 contain the annotations. Then, we traverse the source
code and mark the variables inside a SCoP. For each variable, we determine its
boundary instructions: the first and the last read and write operation. The first
read and write of the array variable a appear in lines 15 and 20 and the last
read and write in lines 55 and 60, respectively. We instrument only these bound-
ary instructions and mark all other memory-access operations on a variable for
exclusion. The dark box shows the section to be left out for variable a.
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Fig. 2. A SCoP and the memory-access instructions excluded from instrumentation.

If a profiler fails to instrument one of the boundary instructions, it will report
false positive and negative data dependences. False positives are data depen-
dences that are reported but do not exist in the program. Conversely, false nega-
tives are data dependences that exist in the program but are not reported by the
profiler. False positive or negative data dependences that are reported when the
boundary instructions are skipped can adversely influence parallelization recom-
mendations that span across multiple SCoPs. The opportunities inside a SCoP,
however, are not affected because PLUTO extracts all the data dependences
relevant to its parallelization. We profile the boundary instructions not to miss
any data dependences that a purely dynamic method would obtain. In addition,
this avoids false positives and negatives and helps assess parallelization potential
that stretches across SCoPs. Figures 3a and b show situations that create false
negatives. If we exclude the first read in Fig. 3a, the read-after-write (RAW)
dependence between the first read inside the SCoP and the last write preceding
it is not reported. If the first write is eliminated, two types of false negatives will
happen: on the one hand, the write-after-read (WAR) between the first write and
the read before the SCoP (Fig. 3b), and the write-after-write (WAW) between
the first write and the write before the SCoP on the other. Moreover, if we do
not instrument the last read operation on a variable (Fig. 3a), the WAR between
the last read and the write after the SCoP will be ignored. If we exclude the last
write, however, dependences of two types will not be reported: the RAW between
the last write and the read after the SCoP (Fig. 3b) and the WAW between the
last write and the write after the SCoP. Of course, these considerations apply
only to live-out loop variables that are accessed both inside and outside the loop.
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(a) (b) (c) (d)

Fig. 3. Situations that create false negative (a and b) and false positive (c and d) data
dependences when the first and last read and write instructions in a SCoP are not
instrumented (shown in dark circles).

Figures 3c and d show situations that create false positives. Three types of
false positives are reported if the boundary instructions are not instrumented.
Figure 3c shows a false positive RAW between the last write preceding the SCoP
and the first read succeeding it. Figure 3d shows a WAR that will be reported
falsely between the last read before the SCoP and the first write after it. Finally,
the write operations before and after the SCoP, in both figures, create false
positive WAW dependences.

Our analysis excludes memory-access instructions that exist in polyhedral
loops. In the worst case, if there are no polyhedral loops in a program, all instruc-
tions are instrumented and thus, the hybrid approach falls back to the purely
dynamic approach. The overhead of the hybrid approach, in this case, is not
reduced in comparison with the purely dynamic approach.

1 1:60 NOM {RAW 1:60|i} {WAR 1:60|i}

2 1:63 NOM {RAW 1:59|temp1} {RAW 1:67|temp1}

3 1:64 NOM {RAW 1:60|i}

4 1:65 NOM {RAW 1:59|temp1} {RAW 1:67|temp1} {WAR 1:67|temp2}

5 1:66 NOM {RAW 1:59|temp1} {RAW 1:65|temp2} {RAW 1:67|temp1}

6 1:67 NOM {RAW 1:65|temp2} {WAR 1:66|temp1}

7 1:70 NOM {RAW 1:67|temp1}

8 1:74 NOM {RAW 1:41|block}

Fig. 4. A fragment of unified data dependences extracted from a sequential program.
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Algorithm 2. Transformation of data dependences identified by PLUTO
into the unified representation.
for each SCoP scop ∈ SCoPSet do

fileID = findF ileID(scop)
depSet = PLUTO.getDeps(scop)
for each dependence dep ∈ depSet do

varName = getV arName(dep)
sourceLine = findSourceLine(dep)
sinkLine = findSinkLine(dep)
depType = getDataType(dep)
print(fileID : sinkLine depType fileID : sourceLine|varName)

3.2 Unified Representation

A data dependence exists if the same memory location is accessed twice and at
least one of the two accesses is a write. Without loss of generality, one of the
accesses occurs earlier and one later during sequential execution. To store data
dependences, static and dynamic tools use different representations, which we
unify in this paper. A sample of unified data dependences is shown in Fig. 4. We
write a data dependence as a triple <sink, type, source>. type is the depen-
dence type (i.e., RAW, WAR, or WAW). Because they are irrelevant to paral-
lelization and, strictly speaking, do not even constitute a dependence according
to our definition above, most data-dependence profilers do not profile read-after-
read (RAR) dependences, which is why we do not report them either. sink and
source are the source code locations of the later and the earlier memory access,
respectively. sink is specified as a pair <fileID:lineID>, while source is spec-
ified as a triple <fileID:lineID|variableName>. We assign a unique fileID to
each file in a program. Existing profilers, including Parwiz, DiscoPoP, SD3, and
Intel Pin [13], already display data dependences in terms of source-code files,
line numbers, and variable names. Thus, transforming their output to our uni-
fied representation requires little effort.

PLUTO, in contrast, assigns a unique ID to each source-code statement in a
SCoP and reports data dependences based on these IDs. We use Algorithm 2 to
transform the output of PLUTO into the unified representation. First, we find
the fileID of each SCoP, before we retrieve the set of data dependences in a SCoP
from PLUTO. We use the IDs to identify the statements in which the source
and sink of a data dependence appear. Then, we read the source code of the
file to find the line number of the statements. Finally, we determine the type of
the data dependence and the name of the variable involved in it. Unfortunately,
PLUTO does not report data dependences for loop index variables. We apply
use-def analysis to statically identify the types of data dependences for the indices
appearing in SCoPs. We cannot run this analysis for an entire program because
the code beyond the SCoPs may contain pointers that cannot be tracked with
use-def analysis. At the end, we transform the dependences for the loop indices
into the unified representation.
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Once we have collected all data dependences using our portfolio of static and
dynamic methods, we merge them into a joint ASCII file. To reduce the size
of the output, we compress the dependence data, merging all dependences with
the same sink into a single line. Finally, we sort the dependences based on the
sink. The result can be used by parallelism discovery tools to find parallelization
opportunities.

3.3 Hybrid vs. Dynamic Data Dependences

Now, we take a deeper look into the relationship between the set of data depen-
dences extracted by our hybrid approach in comparison to the one produced by
purely dynamic analysis, which is illustrated in Fig. 5. To better understand this
relation, let us consider the listings in the figure. In Fig. 5b, both loops meet the
constraints of the polyhedral model. PLUTO finds data dependences in those
loops and, thus, our hybrid approach excludes the whole conditional block from
profiling. Profilers might execute either the if or the else branch, depending on
the condition k < average, and extract dependences only in the executed part.
Only running the program with two different inputs, each of them causing the
program to take a different branch, however, would allow a profiler to iden-
tify dependences in both parts. In general, the set of hybrid data dependences is

(a)

(b) Both loops are polyhe-
dral

(c) Only the loop in the
else part is polyhedral

(d) Neither loops are poly-
hedral

Fig. 5. (a): The relation between dynamic and hybrid data dependences. H includes
data dependences that are identified via hybrid analysis. D contains data dependences
identified via dynamic analysis with a finite set of inputs. (b) and (c): Two examples
where D ⊆ H. (d) One example where H = D.
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therefore a superset of the set of purely dynamic data dependences (i.e., D ⊆ H).
Figure 5c shows a similar case where the set of hybrid dependences contains the
set of dynamic dependences (i.e., D ⊆ H). There are two loops, but only the one
in the else branch is polyhedral. Again, profilers might miss the dependences in
the polyhedral loop if none of the provided inputs makes the program go through
the else branch. Finally, in Fig. 5d, neither loop is polyhedral. PLUTO does not
extract dependences from either loop and, thus, our approach does not exclude
any instructions from instrumentation. In this case, the set of dependences iden-
tified by our approach is equal to the set of dependences detected by purely
dynamic analysis (i.e., H = D).

In theory, H and D would be different for a program only if a polyhedral
loop recognized by PLUTO was never executed. However, this condition hap-
pens rarely in practice because polyhedral loops constitute hotspots, that is,
they consume major portions of the execution time. As several authors have
shown [4–7], such regions are usually always visited—regardless of the specific
input. Exceptions include, for example, erroneous inputs that cause the program
to terminate prematurely.

4 Evaluation

We conducted a range of experiments to evaluate the effectiveness of our app-
roach. Our test cases are the NAS Parallel Benchmarks 3.3.1 [14] (NPB), a suite
of programs derived from real-world computational fluid-dynamics applications,
and Polybench 3.2 [15], a test suite originally designed for polyhedral compil-
ers. We compiled the benchmarks using clang 3.6.8, which is also used by the
DiscoPoP profiler for program instrumentation. We ran the benchmarks on an
Intel(R) Xeon(R) CPU E5-2650 2.00 GHz with 32Gb of main memory, running
Ubuntu 14.04 (64-bit edition). To profile the benchmarks, we used the inputs the
benchmark designers provided alongside the programs. Our evaluation criteria
are the completeness of the data dependences in relation to purely dynamic pro-
filing and the profiling time. We compared the set of data dependences identified
by the profiler with and without prior static analysis. Because the entire source
code of the benchmarks was visited during the execution with the given inputs,
we observed no difference in the reported data dependences. Following the argu-
ments of Sect. 3.3, however, we believe that higher code-coverage potential makes
our approach generally less input sensitive than purely dynamic methods, a claim
we want to substantiate in a follow-up study.

To measure how much our hybrid method speeds up the profiler, we ran
the benchmarks first with the vanilla version of the DiscoPoP profiler. We ran
each benchmark five times in isolation, recorded the median of the execution
times, and declared it as our baseline. Then, we profiled the benchmarks with
the enhanced version of the profiler, taking advantage of prior static analysis and
reduced instrumentation. Again, we ran each benchmark fives times in isolation
and calculated the median of the execution times, which we then compared with
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our baseline. Table 1 summarizes the relative slowdown caused by the purely
dynamic vs. the hybrid approach for the two benchmark suites. Finally, Fig. 6
presents the relative overhead reduction for each benchmark.

Table 1. Relative slowdown caused by standard DiscoPoP vs. the hybrid approach.

Benchmark suites Standard DiscoPoP Hybrid approach

Min Max Median Min Max Median

Polybench 37.57 144.98 71.67 14.26 47.84 24.42

NPB 18.60 130.50 82.67 18.11 121.09 63.18

All 18.60 144.98 72.28 14.26 121.09 27.32

(a) Polybench

(b) NPB

Fig. 6. Profiling-time reduction relative to the standard DiscoPoP profiler.
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Whether we can reduce the profiling time of a benchmark depends on its
computational pattern. In theory, the more work is done in polyhedral loops, the
more effective our method will be. If a program does not contain such loops, we
fail to reduce the profiling overhead significantly. Notably, our method lowered
the profiling time in all test cases. For four benchmarks in NPB, namely EP, IS,
CG, and MG, we observed only small improvements because there we could not
exclude many instructions from profiling. For all other benchmarks, our approach
was highly effective. We noticed that removing write operations influences the
profiling time more than removing reads; when profiling a write operation we
need to look for both WAW and WAR dependences, whereas we only need to
look for RAW dependence when profiling a read operation. In general, however,
the number of excluded write instructions is less than the number of reads.
Overall, we achieved a median profiling-time reduction by 62%. The size of the
dependence files generated by the hybrid approach for these benchmarks is in
the order of kBs.

5 Conclusion

Our hybrid approach to data-dependence analysis allows the profiler to skip
code locations whose dependences can be extracted statically. Nevertheless, not
to miss any data dependence a purely dynamic method would obtain, we still
profile memory operations at the boundaries of these locations, capturing data
dependences that point into and out of them. We implemented our approach in
a state-of-the-art data-dependence profiler and achieved a median reduction of
the profiling time by 62% across a large set of benchmarks, making it far more
practical than before. Faster profiling will enable the DiscoPoP framework to
identify parallelism in larger and longer running programs. However, in principle,
our method can serve as frontend to any data-dependence profiler. Our specific
PLUTO-based implementation focuses on polyhedral loops, which opens up two
possible avenues to future work. First, we could try to expand the coverage of
the static analysis, exploring dependences outside polyhedral loops. Second, since
polyhedral loops can be easily parallelized statically, we could make parallelism
discovery tools, whose strength lies in more unstructured parallelism outside
such loops, aware of them and make them cooperate with polyhedral tools also
on the level of parallelism discovery and code transformation, exploiting their
advantages while filling their gaps.
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