
LLNL-PRES-811108
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Reusing dependencies across ecosystems:
what stands in the way?

Todd Gamblin
Advanced Technology Office

Livermore ComputingFOSDEM 2021
Dependency Management Devroom

2
LLNL-PRES-811108

Software complexity is increasing dramatically

§ Applications today are highly integrated
— HPC simulations use many numerical libraries and

physics packages
— Increasingly, AI stacks are being integrated into

traditional physics workflows

§ Getting performance requires us to use all the
available hardware
— GPU, fast network, processor

§ Frequently, we also want to reuse native
dependencies
— System libraries
— Vendor-supplied drivers, runtime libraries, compilers

Program
Drivers

•Multi-physics
•National Security
•UQ
•Cognitive Simulation

AI and
Cloud

•ML Stacks
•Containers
•Cloud APIs

Hardware
Diversity

•CPU Architectures
•GPUs
•Accelerators

Software
Complexity

Integrating at this scale requires reusing code from many software ecosystems

3
LLNL-PRES-811108

§ 1:1 relationship between source code and binary (per platform)
—Good for reproducibility (e.g., Debian)
—Bad for performance optimization

§ Binaries should be as portable as possible
—What most distributions do
—Again, bad for performance

§ Toolchain is the same across the ecosystem
—One compiler, one set of runtime libraries
—Or, no compiler (for interpreted languages)

Some fairly common (but questionable) assumptions

Outside these boundaries, users are typically on their own

4
LLNL-PRES-811108

§ Code is typically distributed as source
— With exception of vendor libraries, compilers

§ Often build many variants of the same package
— Developers’ builds may be very different
— Many first-time builds when machines are new

§ Code is optimized for the processor and GPU
— Must make effective use of the hardware
— Can make 10-100x perf difference

§ Rely heavily on system packages
— Need to use optimized libraries that come with machines
— Need to use host GPU libraries and network

§ Multi-language
— C, C++, Fortran, Python, others

all in the same ecosystem

High Performance Computing (HPC)
violates many of these assumptions

Oak Ridge National Lab
Power9 / NVIDIA

Summit

Lawrence Berkeley
National Lab

AMD Zen / NVIDIA

NERSC-9
Perlmutter

Oak Ridge National Lab
AMD Zen / Radeon Lawrence Livermore

National Lab
AMD Zen / Radeon

Argonne National Lab
Intel Xeon / Xe

Aurora

Current

Upcoming

Some Supercomputers

RIKEN
Fujitsu/ARM a64fx

Fugaku

5
LLNL-PRES-811108

GPU

CPU

HardwareBackendsKernels

Kernel

Memory

Execution

RWR W

OCCA

CUDA

RAJA

OMP

libCEED

HIPlinalg

fem

mesh

Supporting accelerated architectures require more components,
and more complexity in the software stack

MFEM Finite Element
Library

(pre) Exascale Machines

§ MFEM has redesigned memory management and added 6 libraries
— MFEM has not yet started to support the Intel GPUs on Aurora

§ El Capitan will have a new, rapidly changing set of libraries, compilers, and language runtimes

Added for cross-platform
GPU support

6
LLNL-PRES-811108

HPC simulations rely on icebergs of dependency libraries

sqlite

readline

zlib

cmake

ncurses

openssl

py-setuptools

python

cub

libjpeg-turbo

nasm

py-pyparsingpy-pillow

libxml2

xz

libiconv

pkgconf

automake

autoconf

perl

py-cycler

py-six

py-protobuf

protobuf

libffi

bzip2

gdbm

expatgettext

texinfo

freetype

libpng py-kiwisolver

py-numexpr

py-numpy

ninja

py-onnx

py-typing py-typing-extensionsopenblas

cnpy

diffutils

m4

libtiff py-pytznccl

cuda

py-cython

libsigsegv

conduit

mpich

hdf5

py-setuptools-scm

findutils

py-matplotlib

py-python-dateutil

py-configparser

libtool

tar

cereal

hydrogen

aluminum

hwloc

py-graphviz

py-pandas

py-bottleneck

cudnn

lbann

py-texttable

opencv

71 packages
188 dependency edges

LBANN: Neural Nets for HPC

cmake

ncurses

openssl

diffutils

libiconv

pkgconf

libffi

zlib

hypre

openmpi

openblashdf5

python

sqlite

gettext

gdbm xz

readline

expat

bzip2perl

sundials

libxml2

tar

hwloc

metis

mfem

petsc

superlu-dist

parmetis

MFEM:
Higher-order finite elements

31 packages,
69 dependency edges

py-mdanalysis-mummi

py-setuptools

py-mmtf

py-mock

py-msgpack

py-joblib

py-numpy

py-griddataformats py-networkx

python

py-gsdpy-cython

py-six

py-biopython

libuuid

libyaml

automake

perl

autoconf

py-keras-applications

libevent

openssl

zlibxz

libtool

m4

py-matplotlib

py-cycler

libpng

py-pillow

freetype

py-pyparsing

py-python-dateutil

py-kiwisolver

pkgconf

pcre

libiconv

cudnn

gettext

ncurses

libxml2

tar

bzip2

libzmq

libsodium

redis

py-pyyaml

py-pycparser

flux-sched

flux-core

boost

yaml-cpp

py-setuptools-scm cuda

libbsd

py-keras-preprocessing czmq

faiss

swig

openblas

mummi-macro

py-scipy

mummi

databroker

cmake

py-scikit-learn

py-keras talass

py-jsonschema

py-vcversioner

libsigsegv

lua

unzip

readline

py-cffi

libffiexpat

lua-luaposix

gdbm

numactl

openmpi

hwlocjanssonlz4

libjpeg-turbo

util-macros

py-decorator

sqlite

fftw

diffutils

py-theano

libpciaccess

nasm

gromacs

98 packages
248 dependency edges

MuMMI: Cancer/drug interaction modeling

7
LLNL-PRES-811108

• Spack automates the build and installation of scientific software
• Packages are templated, so that users can easily tune for the host environment

• Ease of use of mainstream tools, with flexibility needed for HPC tuning

• Major victories:
• Fugaku OSS software stack deployment
• Deployment time for 1,300-package stack on Summit supercomputer reduced from

2 weeks to a 12-hour overnight build
• Used by teams across U.S. Exascale Computing Project to accelerate development

$ spack install hdf5@1.10.5
$ spack install hdf5@1.10.5 %clang@6.0
$ spack install hdf5@1.10.5 +threadsafe

$ spack install hdf5@1.10.5 cppflags="-O3 –g3"
$ spack install hdf5@1.10.5 target=haswell
$ spack install hdf5@1.10.5 +mpi ^mpich@3.2

$ git clone https://github.com/spack/spack
$ spack install hdf5

No installation required: clone and go

Simple syntax enables complex installs

github.com/spack/spack

Spack enables Software distribution for HPC

8
LLNL-PRES-811108

§ spack.yaml describes project requirements

§ spack.lock describes exactly what versions/configurations were
installed, allows them to be reproduced.

§ Frequently used to maintain configuration along with Spack
packages.
— Versioning a local software stack with consistent compilers/MPI

implementations

§ Allows users to specify external packages to integrate

Spack environments enable users to build customized stacks
from an abstract description

Simple spack.yaml file

install
build

project
spack.yaml file with
names of required

dependencies

Lockfile describes
exact versions installed

Dependency
packages

Concrete spack.lock file (generated)

9
LLNL-PRES-811108

§ LLNL’s MuMMI code is a used to model drugs,
including cancers and, more recently, COVID-19

§ When standing up Sierra, the team was at the mercy of constant system updates

§ We use system dependencies (MPI, compilers) to:
— get the best performance from the machine.
— avoid long build times

Build integration complexity has caused large delays in the
MuMMI developer workflow

SC ’19, November 17–22, 2019, Denver, CO, USA F. Di Natale et al.

Figure 1: Addressing many important biological questions requires large length- and time-scales, yet at the same time molec-
ular level details. Here we showcase theMultiscale Machine-Learned Modeling Infrastructure (M�MMI) by simulating protein-
lipid dynamics for a 1 �m x 1 �m membrane subsection at near-atomistic resolution.

execution on heterogeneous resources. A central work�ow man-
ager simultaneously allocates GPUs and CPUs while robustly han-
dling failures in compute nodes, communication networks, and
�lesystems. A hierarchical scheduler controls GPU-accelerated MD
simulations and in situ analysis.

We present the various M�MMI components, including the
macro model, GPU-accelerated MD, in situ analysis of MD data,
machine learning selection module, a highly scalable hierarchical
scheduler, and detail the central work�ow manager that ties these
modules together. In addition, we present performance data from
our runs on Sierra, in which we validated M�MMI by investigating
an experimentally intractable biological system: the dynamic inter-
action between RAS proteins and a plasma membrane. We used up
to 4000 nodes of the Sierra supercomputer, concurrently utilizing
over 16,000 GPUs and 176,000 CPU cores, and running up to 36,000
di�erent tasks. This multiscale simulation includes about 120,000
MD simulations aggregating over 200 milliseconds, which is orders
of magnitude greater than comparable studies.

CCS CONCEPTS
•Computingmethodologies→Machine learning;Multiscale
systems; Massively parallel and high-performance simula-
tions; Simulation tools; •Applied computing→Computational
biology.

KEYWORDS
multiscale simulations, adaptive simulations, massively parallel,
heterogenous architecture, machine learning, cancer research

ACM Reference Format:
Francesco Di Natale, Harsh Bhatia, Timothy S. Carpenter, Chris Neale, Sara
Kokkila Schumacher, Tomas Oppelstrup, Liam Stanton, Xiaohua Zhang, Shiv
Sundram, Thomas R. W. Scogland, Gautham Dharuman, Michael P. Surh,
Yue Yang, Claudia Misale, Lars Schneidenbach, Carlos Costa, Changhoan
Kim, Bruce D’Amora, Sandrasegaram Gnanakaran, Dwight V. Nissley, Fred
Streitz, Felice C. Lightstone, Peer-Timo Bremer, James N. Glosli, and Helgi I.
Ingólfsson. 2019. A Massively Parallel Infrastructure for Adaptive Multiscale
Simulations: Modeling RAS Initiation Pathway for Cancer. In The Interna-
tional Conference for High Performance Computing, Networking, Storage, and
Analysis (SC ’19), November 17–22, 2019, Denver, CO, USA. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3295500.3356197

1 INTRODUCTION
While supercomputers continue to provide more raw compute
power, it is becoming increasingly di�cult for applications to fully
exploit these resources. The challenge of building a multiscale mod-
eling capability utilizing modern supercomputing architecture —
heterogeneous computing elements, deep memory hierarchies, and
complex network interconnects — can be decomposed along two
thematic axes: (1) the algorithmic challenges in managing increas-
ing levels of parallelism within an application, and (2) the logistic
challenges of scheduling and coordinating the execution of multiple
applications across such diverse resources.

The prototypical approach to the �rst challenge are monolithic
parallel applications able to simulate problems of unprecedented
size and scale using full-system runs [30, 34, 67]. Conversely, the
work�ow challenge is often approached through massively parallel
ensembles [56], which execute a large number of small- or medium-
scale instances simultaneously. Here, we describe the creation of
a novel simulation infrastructure that addresses both challenges
and enables, as an example, the execution of a massively parallel,
multiscale simulation steered by a machine learning (ML) approach,
and orchestrated through a sophisticated work�ow governing thou-
sands of simultaneous tasks.

The scienti�c challenge to which we apply our novel infrastruc-
ture is an investigation of the interaction of RAS proteins with the
cell membrane. Mutations of RAS contribute to a wide range of
cancers as RAS modulates the signaling pathways that control cell
division and growth. RAS activates signaling only when bound to
lipid bilayers that form cellular membranes. This membrane asso-
ciation is an under-explored area of cancer biology that may be
relevant to therapeutic intervention against cancer. We useM�MMI
to facilitate the better understanding of the mechanism and dynam-
ics of interaction between RAS, lipids, and other signaling proteins,
which requires molecular-level detail and cannot be obtained exper-
imentally with current technologies. MD simulations can simulate
such interactions with the appropriate detail, but only for micro-
scopic length- and time-scales (even on the largest computers).
However, lipid concentration gradients and protein aggregation
evolve over length- and time-scales hard to access through high-
resolution MD.

Di Natale et al. A Massively Parallel Infrastructure for Adaptive Multiscale Simulations: Modeling RAS Initiation Pathway for Cancer. In Supercomputing 2019 (SC ’19). 2019. Best paper.

Determine
system library
configurations

Build code
Fix

bugs/configs
based on errors

Productivity! OS update Application
breaks

10
LLNL-PRES-811108

§ LLNL’s MuMMI code is a used to model drugs,
including cancers and, more recently, COVID-19

§ When standing up Sierra, the team was at the mercy of constant system updates

§ We use system dependencies (MPI, compilers) to:
— get the best performance from the machine.
— avoid long build times

Build integration complexity has caused massive delays in the
MuMMI developer workflow

SC ’19, November 17–22, 2019, Denver, CO, USA F. Di Natale et al.

Figure 1: Addressing many important biological questions requires large length- and time-scales, yet at the same time molec-
ular level details. Here we showcase theMultiscale Machine-Learned Modeling Infrastructure (M�MMI) by simulating protein-
lipid dynamics for a 1 �m x 1 �m membrane subsection at near-atomistic resolution.

execution on heterogeneous resources. A central work�ow man-
ager simultaneously allocates GPUs and CPUs while robustly han-
dling failures in compute nodes, communication networks, and
�lesystems. A hierarchical scheduler controls GPU-accelerated MD
simulations and in situ analysis.

We present the various M�MMI components, including the
macro model, GPU-accelerated MD, in situ analysis of MD data,
machine learning selection module, a highly scalable hierarchical
scheduler, and detail the central work�ow manager that ties these
modules together. In addition, we present performance data from
our runs on Sierra, in which we validated M�MMI by investigating
an experimentally intractable biological system: the dynamic inter-
action between RAS proteins and a plasma membrane. We used up
to 4000 nodes of the Sierra supercomputer, concurrently utilizing
over 16,000 GPUs and 176,000 CPU cores, and running up to 36,000
di�erent tasks. This multiscale simulation includes about 120,000
MD simulations aggregating over 200 milliseconds, which is orders
of magnitude greater than comparable studies.

CCS CONCEPTS
•Computingmethodologies→Machine learning;Multiscale
systems; Massively parallel and high-performance simula-
tions; Simulation tools; •Applied computing→Computational
biology.

KEYWORDS
multiscale simulations, adaptive simulations, massively parallel,
heterogenous architecture, machine learning, cancer research

ACM Reference Format:
Francesco Di Natale, Harsh Bhatia, Timothy S. Carpenter, Chris Neale, Sara
Kokkila Schumacher, Tomas Oppelstrup, Liam Stanton, Xiaohua Zhang, Shiv
Sundram, Thomas R. W. Scogland, Gautham Dharuman, Michael P. Surh,
Yue Yang, Claudia Misale, Lars Schneidenbach, Carlos Costa, Changhoan
Kim, Bruce D’Amora, Sandrasegaram Gnanakaran, Dwight V. Nissley, Fred
Streitz, Felice C. Lightstone, Peer-Timo Bremer, James N. Glosli, and Helgi I.
Ingólfsson. 2019. A Massively Parallel Infrastructure for Adaptive Multiscale
Simulations: Modeling RAS Initiation Pathway for Cancer. In The Interna-
tional Conference for High Performance Computing, Networking, Storage, and
Analysis (SC ’19), November 17–22, 2019, Denver, CO, USA. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3295500.3356197

1 INTRODUCTION
While supercomputers continue to provide more raw compute
power, it is becoming increasingly di�cult for applications to fully
exploit these resources. The challenge of building a multiscale mod-
eling capability utilizing modern supercomputing architecture —
heterogeneous computing elements, deep memory hierarchies, and
complex network interconnects — can be decomposed along two
thematic axes: (1) the algorithmic challenges in managing increas-
ing levels of parallelism within an application, and (2) the logistic
challenges of scheduling and coordinating the execution of multiple
applications across such diverse resources.

The prototypical approach to the �rst challenge are monolithic
parallel applications able to simulate problems of unprecedented
size and scale using full-system runs [30, 34, 67]. Conversely, the
work�ow challenge is often approached through massively parallel
ensembles [56], which execute a large number of small- or medium-
scale instances simultaneously. Here, we describe the creation of
a novel simulation infrastructure that addresses both challenges
and enables, as an example, the execution of a massively parallel,
multiscale simulation steered by a machine learning (ML) approach,
and orchestrated through a sophisticated work�ow governing thou-
sands of simultaneous tasks.

The scienti�c challenge to which we apply our novel infrastruc-
ture is an investigation of the interaction of RAS proteins with the
cell membrane. Mutations of RAS contribute to a wide range of
cancers as RAS modulates the signaling pathways that control cell
division and growth. RAS activates signaling only when bound to
lipid bilayers that form cellular membranes. This membrane asso-
ciation is an under-explored area of cancer biology that may be
relevant to therapeutic intervention against cancer. We useM�MMI
to facilitate the better understanding of the mechanism and dynam-
ics of interaction between RAS, lipids, and other signaling proteins,
which requires molecular-level detail and cannot be obtained exper-
imentally with current technologies. MD simulations can simulate
such interactions with the appropriate detail, but only for micro-
scopic length- and time-scales (even on the largest computers).
However, lipid concentration gradients and protein aggregation
evolve over length- and time-scales hard to access through high-
resolution MD.

Di Natale et al. A Massively Parallel Infrastructure for Adaptive Multiscale Simulations: Modeling RAS Initiation Pathway for Cancer. In Supercomputing 2019 (SC ’19). 2019. Best paper.

Determine
system library
configurations

Build code
Fix

bugs/configs
based on errors

Productivity! OS update Application
breaks

~ 100 lines, 20 pinned system dependencies
configured per machine

11
LLNL-PRES-811108

Transitive dependency requirements can cause cascading issues

py-mdanalysis-mummi

py-setuptools

py-mmtf

py-mock

py-msgpack

py-joblib

py-numpy

py-griddataformats py-networkx

python

py-gsdpy-cython

py-six

py-biopython

libuuid

libyaml

automake

perl

autoconf

py-keras-applications

libevent

openssl

zlibxz

libtool

m4

py-matplotlib

py-cycler

libpng

py-pillow

freetype

py-pyparsing

py-python-dateutil

py-kiwisolver

pkgconf

pcre

libiconv

cudnn

gettext

ncurses

libxml2

tar

bzip2

libzmq

libsodium

redis

py-pyyaml

py-pycparser

flux-sched

flux-core

boost

yaml-cpp

py-setuptools-scm cuda

libbsd

py-keras-preprocessing czmq

faiss

swig

openblas

mummi-macro

py-scipy

mummi

databroker

cmake

py-scikit-learn

py-keras talass

py-jsonschema

py-vcversioner

libsigsegv

lua

unzip

readline

py-cffi

libffiexpat

lua-luaposix

gdbm

numactl

openmpi

hwlocjanssonlz4

libjpeg-turbo

util-macros

py-decorator

sqlite

fftw

diffutils

py-theano

libpciaccess

nasm

gromacs

py-mdanalysis-mummi

py-setuptools

py-mmtf

py-mock

py-msgpack

py-joblib

py-numpy

py-griddataformats py-networkx

python

py-gsdpy-cython

py-six

py-biopython

libuuid

libyaml

automake

perl

autoconf

py-keras-applications

libevent

openssl

zlibxz

libtool

m4

py-matplotlib

py-cycler

libpng

py-pillow

freetype

py-pyparsing

py-python-dateutil

py-kiwisolver

pkgconf

pcre

libiconv

cudnn

gettext

ncurses

libxml2

tar

bzip2

libzmq

libsodium

redis

py-pyyaml

py-pycparser

flux-sched

flux-core

boost

yaml-cpp

py-setuptools-scm cuda

libbsd

py-keras-preprocessing czmq

faiss

swig

openblas

mummi-macro

py-scipy

mummi

databroker

cmake

py-scikit-learn

talasspy-keras

py-jsonschema

py-vcversioner

libsigsegv

lua

unzip

readline

py-cffi

libffiexpat

lua-luaposix

gdbm

numactl

openmpi

hwlocjanssonlz4

libjpeg-turbo

util-macros

py-decorator

sqlite

fftw

diffutils

libpciaccess

nasm

gromacs

py-theano

py-mdanalysis-mummi

py-numpy

py-griddataformatspy-gsd py-biopython py-matplotlibfaiss

openblas

py-scipy

mummi

py-scikit-learn py-keras

py-theano

gromacs

> 70 packages

§ Team “just” needed a new version of Keras
— which needed a new version of Theano
— which needed a new version of Numpy
— which needed a newer version of OpenBLAS
— But the team was using the system OpenBLAS, which was too old
— Team had to build several versions of OpenBLAS before they found

one compatible with all other packages in the DAG
— Then had to rebuild the entire stack for ABI compatibility

§ This particular issue consumed 36 person hours

§ Frequent OS updates causing ABI incompatibilities between Flux, PMI,
and the system MPI cost hundreds of person hours

12
LLNL-PRES-811108

§ Teams really like to lock versions down for testing:
— Axom team tests on several systems and pins about 20

package versions to consistent (at the time) values
— Serac team pins more system versions than this
— xSDK and E4S stacks from ECP pin specific versions for each

package

§ Incompatibilities arise and builds fail in one or both
of two ways:
1. Spack upgrade leads to failure because new versions and

options enter the Spack repository that are incompatible
2. OS upgrades at a local site change local versions

underneath a package

§ Inevitably, this version locking effort is spent over
and over again for subsequent releases

Other teams (Axom, Serac, xSDK, E4S) have similar issues
with managing configuration complexity

Pinned versions and options from xSDK

~21 core libraries
~70 total packages

13
LLNL-PRES-811108

§ Developers avoid updates to avoid
problems with dependencies,
leading to:
— Security vulnerabilities
— Lack of performance
— Stagnation as upgrades become

harder and harder over time

Even outside of HPC, dependencies are the most frequent cause
of build errors and software release delays

Factors perceived to cause release delays
among 491 developers at ING

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Elvan Kula, Ayushi Rastogi, Hennie Huijgens, Arie van Deursen, Georgios Gousios

general and for security), following mandatory procedures (such
as for quality assurance) prior to every release, �xing bugs, and
scheduling the release, including planning e�ort and resources.
Non-rapid teams experience similar issues. Similar to rapid teams,
non-rapid teams report to be largely in�uenced by dependencies.
The other factors which were considered important by at least 10%
of the respondents are scheduling, procedure, and security testing.

Further analysis of the most prominent factor perceived to delay
rapid and non-rapid teams (dependency) explained the sources of
dependency in the organization. Developers, in their open-ended re-
sponses, attributed two types of dependencies to cause delay in their
releases. At a technical level, developers have to deal with cross-
project dependencies. Teams at ING work with project-speci�c
repositories and share codebases across teams within one applica-
tion. At a work�ow level, developers mention to be hindered by
task dependencies. Inconsistent schedules and unaligned priorities
are perceived to cause delays in dependent teams. Many develop-
ers seem to struggle with estimating the impact of both types of
dependencies in the release planning.

Another factor which is perceived to prominently a�ect rapid
and non-rapid teams is security testing. For rapid teams, developers
report that security tests are almost always delayed because of an
unstable acceptance environment or missing release notes. They
further add that any software release needs to pass the required
security penetration test and secure code review, which are centrally
performed by the CIO Security department at ING. Respondents
report that they often have to delay releases because of “delayed
penetration tests" [r66], “unavailability of security teams" [r133] and
“acting upon their �ndings" [r86].

Rapid teams also report delays related to infrastructure and
testing (in general). These factors do not feature in the top men-
tioned factors in�uencing non-rapid teams. Regarding infrastruc-
ture, respondents mention that issues in infrastructure are related
to the failure of tools responsible for automation (such as Jenkins

Figure 5: Factors perceived to cause delays in rapid and non-rapid
teams

and Nolio) and sluggishness in the pipeline caused by network or
proxy issues. Respondent [r168] states that “Without the autonomy
and tools to �x itself, we have to report these issues to the teams of
CDaas and wait for them to be solved". Regarding testing, developers
mention that the unavailability or instability of the test environ-
ment induces delay in releasing software. Respondent [r11] states
that “In that case we want to be sure it was the environment and not
the code we wish to release. Postponing is then a viable option”.

Further analysis of the survey responses showed that the rapidly
released mobile applications and APIs that are least often on time
(found in RQ1) are hindered by dependencies and testing. Many
mobile app developers report to experience delay due to depen-
dencies on a variety of mobile technologies and limited testing
support for mobile-speci�c test scenarios. API developers report
to be delayed by dependencies in back-end services and expensive
integration testing.

Dependencies, especially in infrastructure, and testing are
the top mentioned delay factors in rapid releases.

4.3 RQ3: How do rapid release cycles a�ect
code quality?

For this research question, we considered 202 survey responses from
developers in rapid teams. We removed 165 non-rapid respondents
next to 94 rapid respondents who did not identify as a developer at
ING.

4.3.1 Developers’ Perceptions. Developers have mixed opinions
on how RRs a�ect code quality. A distribution of the e�ect of RRs
(improve, degrade, no e�ect) on di�erent factors related to code as
perceived by developers is shown in Figure 6. It shows responses
suggesting improvements in quality in green, degradation in quality
in red and no e�ect in grey.

Quality improvement. A majority of developers perceive that
the small changes in RRs make the code easier to review, positively
impacting the refactoring e�ort (e.g., “It gets easier to review the code
and address technical debt" [r16]). Developers also report that the
small deliverables simplify the process of integrating and merging
code changes, and they lower the impact of errors in development.
A few developers mention that RRs motivate them to write modular
and understandable code.

A large number of developers mention the bene�ts of rapid
feedback in RRs. Feedback from issue trackers and the end user
allows teams to continuously refactor and improve their code qual-
ity based on unforeseen errors and incidents in production. Rapid
user feedback is perceived to lead to a greater focus of developers
on customer value and software reliability (e.g., “[RRs] give more
insight in bugs and issues after releasing. [They] enable us to respond
more quickly to user requirements" [r232], “We can better monitor
the feedback of the customers which increased [with RRs]." [r130]).
This enables teams to deliver customer value at a faster and more
steady pace (e.g., “[With RRs] we can provide more value more often
to end users." [r65], “Features are delivered at a more steady pace"
[r16]).

790

Survey of 491 individuals from 691 teams at ING.
Kula et al., Releasing fast and slow: an exploratory case
study at ING. ESEC/SIGSOFT FSE 2019.

operator.cant.be.applied

expected3

illegal.start.of.type

var.might.not.have.been.initialized

not.def.public.cant.access

missing.ret.stmt

not.stmt

static.imp.only.classes.and.interfaces

illegal.start.of.expr

report.access

non−static.cant.be.ref

already.defined

rawtypes

unreported.exception.need.to.catch.or.throw

cant.apply.symbols

does.not.override.abstract

expected

method.does.not.override.superclass

unchecked

incompatible.types

cant.apply.symbol.1

cant.apply.symbol

doesnt.exist

strict

cant.resolve

0 10 20 30 40
Percentage of errors

(a) Java

bound_member_function

incomplete_member_access

access

typecheck_call_too_few_args

expected_unqualified_id

typename_nested_not_found

non_virtual_dtor

typecheck_invalid_operands

expected_expression

typecheck_member_reference_arrow

typecheck_member_reference_suggestion

ovl_no_viable_member_function_in_call

expected_rparen

pp_file_not_found

member_decl_does_not_match

init_conversion_failed

no_member_overloaded_arrow

ovl_no_viable_function_in_init

typecheck_nonviable_condition

unknown_typename

ovl_no_viable_function_in_call

unknown_typename_suggest

no_member

undeclared_var_use_suggest

undeclared_var_use

0 10 20 30 40
Percentage of errors

(b) C++

Figure 5: Reasons for build errors

code components. For example, name resolution errors or
missing file errors belong to this category. However, other
errors, such as when produced by mistyping a variable name,
also fall into this category as they have the same underlying
compiler error kind. Type mismatch includes type errors.
For example, errors occurring when a variable is assigned
to an incompatible type or when a function is called with
wrong argument types belong to this category. Syntax rep-
resents simple syntax errors such as omitting a parenthesis
or includes errors that occur when the compiler expects an
expression but is given something else. Semantic includes
errors related to class access rule violations or not imple-
menting abstract methods. We classified the remaining er-
rors into Other. Undefined virtual destructors, redefined
names, or uncaught exceptions belong to this category.

The percentage of error messages in each category is shown
in Figure 6. Dependency-related errors are the most com-
mon error type for both C++ (52.68%) and Java (64.71%).2

We also noticed that there are more syntax errors in our data
set for C++; this is again consistent with the greater IDE
usage for Java.

4.3 RQ3: How long does it take to fix builds?
To measure how long it takes to fix build errors, we col-

lected resolution time data as described in Section 3.3. Res-
olution time measures the time interval between the com-
pletion of a first failed build and the start of the next suc-
cessful build. Resolution time may not measure the time

2Note that we may classify mistyping a variable name as
a dependency error when the compiler produces the same
error message for both cases. However, even if we assume
3/4 of cant.resolve errors are the result of typos (as in the
sample from Table 4) and remove them from this category,
dependency errors are still the most common error category
for Java.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

DEPENDENCY

TYPE M
IS

MATCH

SYNTA
X

SEMANTIC

OTHER

P
er

ce
nt

ag
e

of
 B

ui
ld

 E
rr

or
s

Category

C++

Java

Figure 6: Build error category (joins C++ and Java

data)

that the developer actually spent addressing the problem
and waiting for compiles to complete; it is possible that the
developer switched to a di↵erent task or was away from her
desk during some error fixing sessions we logged. To re-
move extreme cases (e.g., the developer went home for the
day), we omitted any builds in which the resolution time
was greater than twelve hours. When multiple error kinds
are resolved at once, it is not easy to discriminate resolution
time per error kind. Dividing the total resolution time by
the number of error kinds is one possible approach but this
introduces further imprecision to the resolution time. In-
stead, we constrained our analysis to failing builds with one
kind of error message. This filter retains 60% of the Java
builds and 40% of the C++ builds, for a total of more than
10 million builds.

729

Survey of 26.6M builds by 18K developers at Google.
Seo et al., Programmers’ Build Errors: A Case Study (at
Google). ICSE 2014.

Types of errors in
26.6 million builds at Google

“our study clearly shows that better tools to resolve
dependency errors have the greatest potential payoff”

14
LLNL-PRES-811108

Three main ways to deal with dependencies have emerged
in the past 10-20 years

Taxonomy c/o T. Winters et al. Software Engineering at Google. 2020.

Bundled Distribution Semantic Versioning Live at Head
Examples Linux distributions (Red Hat, Debian)

E4S, xSDK, Anaconda
Spack with locked versions

Spack
NPM, Cargo, Go
Most language dependency managers

Google, Facebook, Twitter

Idea Curate a large set of mutually compatible
dependencies

Use uniform version convention,
Solve for compatible set

Everything in one repository,
Developers test changes with all dependents

Pros Stability (if software is included) Frequent updates
Only relies on local information
Works in theory

Frequent updates
Stability, consistency
All changes tested

Cons Infrequent updates
High packaging/curation effort
Lack of flexibility

Versions are coarse
Developers over-constrain/over-promise
Errors start to dominate at scale

Doesn’t scale beyond a single organization
High computational cost of testing
Lack of flexibility (typically just one target env.)

§ All of the approaches have serious drawbacks

§ Need a way to guarantee stability, frequent updates, and version/config flexibility

15
LLNL-PRES-811108

In workflows we’ve seen so far:

1. No information on how system libs were built

2. Build repeatedly to find compatible libraries

3. Hard constraints (pinned versions, etc.) hide
information and limit choice

Each team ends up curating its own configuration
with baked-in, incompatible assumptions

The fundamental problem with integrating native dependencies
is lack of compatibility information

Community
Package

Repository
xSDK

Axom

E4S
MuMMI

Serac

Conduit

Others

If all projects add restricted versions,
conflicts will eventually arise that prevent

all packages from building.

We need a way to reuse package builds among different communities of developers

16
LLNL-PRES-811108

1. When OS updates happen underneath a stack:
— Know what changed by examining the binaries’ ABI
— Identify what in the stack is no longer compatible
— Rebuild compatible configurations

2. When user requirements change (e.g., due to a new version):
— Know which packages need to change to meet the new requirements
— Identify existing binaries (system or packaged) that satisfy the requirements
— Install binaries or rebuild as necessary

3. When information is not available:
— Extrapolate what and how to build based on past, similar builds

We’d really like to be able to reuse binary packages
as we find them

We will enable binary code reuse to reduce iteration in developer workflows

17
LLNL-PRES-811108

BUILD: Binary Understanding and Integration Logic for Dependencies

We’re kicking off the BUILD project at LLNL
to address some of these issues

What makes
software packages

compatible?

• What determines binary
compatibility of functions and
data structures?

• How can we model changes
over time?

• How do changes affect other
packages in a graph?

• Which changes are breaking?

How to
assess compatibility

automatically?

• How to reconstitute interface
information from binaries?

• How to know what data types
are used by other binaries?

• How to efficiently manage
debug information?

• How to associate ABI
information with versions?

How to find
valid configurations?

• Which NP-complete problem
solver should we use?
• ASP? SMT?

• How can we encode large
problems for efficient solves?

• What heuristics can be used to
accelerate the solve?

• Do we need to develop new
solver algorithms?

Models Binary Analysis Dependency Solvers

Research
Questions

18
LLNL-PRES-811108

What’s missing from current package ecosystems?

A version v1

B version v2

C version v3

C++ runtime
version v4

(not modeled)

Current model is coarse
§ Humans define rules like these:

— A version 1.0 depends on B version 2.0
— B version 2.0 depends on C version 3.0 or 4.0

§ Humans update rules each time there is a new release

§ Specification is incomplete
— Runtime libraries, compilers, etc. are not modeled
— Not clear whether updates to C require us to rebuild A
• no ABI information

§ No place for global constraints in the model, e.g.:
— e.g., “must link with C++ compiler if any dependency uses C++”
— “gcc and clang are ABI incompatible when …”

19
LLNL-PRES-811108

§ C++11 brought about binary incompatible
changes to the C++ runtime library
— All C++ codes had to be rebuilt with new compilers

to be compatible
— New builds could not be linked with old ones

§ The C++ library version was not bumped, so
strange runtime errors would happen

§ ABI models would show us the differences in
data type definitions between old and new

§ This type of error happens frequently when
mixing Fortran compilers, as well.

Lack of ABI information about runtime libraries has bitten our
code teams over and over again

1

icpc@16

g++@4.4.7

Already-installed
dependency

Compiler-imposed,
implicit dependency

Old libstdc++

2

icpc@17

g++@7.3.0

New libstdc++

Incompatible!

20
LLNL-PRES-811108

§ Pitfalls:
— Applies to the whole package, but packages may only depend on a subset of functions
— May over-promise: packages may break despite developers’ intentions
— May over-constrain: pinned dependency versions are common but lead to false unsatisfiable cases

§ Relies on developers to specify versions correctly
— Relies on broad community participation

Semantic versioning is the de-facto standard for conveying
compatibility information

1.2.3Major Version
Increment only when changes break compatibility.

Minor Version
Increment for backward-compatible added functionality

Patch Version
Increment for backward-compatible bugfixes.

https://semver.org/

https://semver.org/

21
LLNL-PRES-811108

§ Plots show version restrictions across 4 package ecosystems.
— Permissive leaves room for lots of room for incorrect builds
— Restrictive rules out builds that would work
— Non-specialized (white) leaves everything open (no constraints)

§ HPC ecosystem is most like Ruby (right) – dated, with many permissive constraints
— Most projects don’t use semantic versioning and won’t switch
— Likelihood of build errors is very high

Humans do not accurately specify version information

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2918315, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.X, NO.Y, DATE 9

Fig. 4. Survival analysis for event “the dependency constraint is changed”, grouped by type of constraint (compliant, permissive or restrictive). The
survival probability for pre-1.0.0 constraints is shown with dotted lines, and with straight lines for post-1.0.0 constraints.

Fig. 5. Proportion of required packages “specialized” towards a specific constraint type (compliant, permissive or restrictive) for its reverse
dependencies, based on monthly snapshots of the package dependency network.

TABLE 3
Concrete examples of specialization analysis for some frequently used packages, and suggested recommendation for package maintainers

desiring to depend on these packages.

package ecosystem dependents compliant permissive restrictive decision
serde Cargo 592 575 (97.1%) 0 17 adhere to semantic versioning

mage2pro/core Packagist 51 1 50 (98.0%) 0 set permissive dependency constraint
react-scripts npm 57 1 0 56 (98.2%) impose restrictive dependency constraint

rails Rubygems 997 288 506 203 undecided
rest-client Rubygems 387 173 137 77 undecided

pessimistic strategy avoids breaking changes by preventing
newer minor releases or patches from being used. It should
be followed if the required package regularly introduces
breaking changes in such minor or patch releases. The opti-
mistic strategy corresponds to a reactive approach where the
package maintainer allows for new releases of dependent
packages, even if they may cause breaking changes. If this
happens, the maintainer of the dependent package will have
to address the problem. Anecdotal evidence, gathered from
a survey over 2,000 developers in 18 ecosystems [9] appears
to confirm the use of the optimistic strategy: developers
report that breaking changes are fairly infrequent, and that
developers only take action when they notice that some-
thing breaks because of a change in a dependency.

In what follows, we adopt the assumption that package
maintainers generally know what they are doing when
defining dependency constraints (even though there may
be exceptions), hence it is unlikely that the majority of them
would be doing it wrong at the same time. Based on the
above reasoning, we hypothesise that, if many dependents
of the same required package use compliant constraints, it is
likely that this package respects the semver policy. A similar
reasoning could be made for permissive and restrictive
constraints.

As anecdotal evidence of this hypothesis, let us consider

the cases of underscore and lodash. Both packages are dis-
tributed on npm and provide similar features. While lodash
claims to follow semver, underscore is known not to have
respected semver in the past,13 notably in versions 1.7.0 and
1.8.0, respectively released in August 2014 and February
2015. An analysis of dependency constraints in the last
snapshot of npm indicates that while 80.4% of constraints
targeting lodash are compliant with semver, only 46.2%
of those targeting underscore are. The latter proportion is
barely higher than the proportion of restrictive constraints
(41.7%). As such, based on the “wisdom of the crowds”
principle, new packages desiring to depend on underscore
can assume that it is more safe to use restrictive constraints,
while for lodash they can use compliant constraints.

Relying on a commonly used threshold in statistical
analysis, we consider the reverse dependencies of a required
package to be “in agreement” if “at least 95%” of them use
the same type of constraint (i.e., compliant, permissive or
restrictive). In those cases, we will call the required package
“specialized”.

We computed monthly snapshots of each package de-
pendency network and, for each snapshot, we computed
the proportion of such “specialized” required packages by

13. See, e.g., github.com/jashkenas/underscore/issues/1684

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on April 24,2020 at 20:08:45 UTC from IEEE Xplore. Restrictions apply.

Rust (Cargo) NPM (JavaScript) PHP (Packagist) Ruby (Gems)

Decan et al. What Do Package Dependencies Tell Us About Semantic Versioning? IEEE Trans. Software Eng. May 2019.

22
LLNL-PRES-811108

What if the package manager could model more aspects of ABI?

A version v1

B version v2

C version v3

C++ runtime
version v4

(not modeled)

C++ runtime version v4
defines t1

Current model is coarse Complete model represents how changes affect code

A version v1

B version v2, defines t2

C version v3, defines t3

f(t1) g(t1, t2)

h(t3) i(t1, t3)

j(t1)

k(t1)

l(t1)

§ Libraries at call granularity:
— Entry calls
— Exit calls
— Data type definitions & usage

§ Runtime libraries behind compilers
— C++, OpenMP, glibc
— GPU runtimes

§ Changes in the graph
— “If C changes, what needs to be

rebuilt?”
— We will model semantics of interfaces
— “If h(t3) changes, is B still correct?

C version v3, defines t3

h(t3) i(t1, t3)

C++ runtime version v4
defines t1

A version v1

B version v2, defines t2

C version v3, defines t3

f(t1) g(t1, t2)

h(t3) i(t1, t3)

j(t1)

k(t1)

l(t1)

This model allows us to reason about compatibility

23
LLNL-PRES-811108

§ Containers in industry are used in an isolated way
— No need (until recently) to use special hardware
— Container has its own OS image

§ HPC containers assume tighter coupling between
containers and host
— Choose MPI or other layer as an interface

• Omits transitive library considerations
• Works until it doesn’t – no way to check or warn

§ Example: glibc compatibility issue at NERSC (right)

§ We will build models to check configurations and
ensure binary compatibility in the full stack
— Here we could fix the problem by including glibc 2.17
— Our models will tell us that this is what is needed

A common ABI issue: containers with hardware dependencies

Host (RHEL7) Container (RHEL6)

glibc 2.12

Container MPI
ABI Compatible

Isolated container usage model

Application

glibc 2.17

Host MPI

Attempt to use host MPI gone wrong

Host (RHEL7) Container (RHEL6)

glibc 2.12

Container MPI

Application

glibc 2.17

Host MPI

bindmount

Host MPIABI
Incompatible!

24
LLNL-PRES-811108

To reason about ABI, we need better binary tools

OS-provided libraries

Stripped proprietary binaries

Prebuilt packages

§ Binaries are the ground truth for compatibility
— They contain the functions and data types we must link against
— Can’t tell compatibility directly from source (depends on build)
— Binaries are final output

§ We often want to be able to make use of existing binaries, but
it’s difficult to do in a cross-platform way

§ There aren’t tools that can tell us when the thing we’ll build or
link is actually compatible with an existing binary
— Metadata and OS conventions vary by system
— Debug information may not be available
— Other communities’ builds may be very different from ours

We need better debug information to rely on prebuilt packages.

25
LLNL-PRES-811108

With the right tools, we can extract
more compatibility information from binaries

Binary Analysis B version v2, defines t2

f(t1) g(t1, t2)

h(t3) i(t1, t3)

Compatibility Models

entry points

exit points

data structures &
semantics

OS-provided libraries

Stripped proprietary binaries

Prebuilt packages

§ Libraries like libabigail and dyninst can do parts of this with debug information (DWARF)
— Typically requires accurate debug information, which is not always shipped with the system

§ Tools like debuginfod may allow us to look up debug information without having it installed
— Not available for all distros
— Needs to be on the critical path for package managers for broader availability

§ Still some gaps even with debug information:
— Dynamically loaded libraries
— Can’t tell statically which ones are used

26
LLNL-PRES-811108

Human-generated constraints

With compatibility information, we can improve the way
we do dependency solving

§ Package managers produce valid
but not sound graphs.
— ABI info gives us what we need for soundness

§ Solvers could use models generated by binary
analysis (ground truth)

§ Past 10-20 years have brought enormous
improvements in solver technology
— CDCL algorithms
— Optimizing SMT and ASP solvers

§ Time is right to attack packaging with better solving

mpileaks
version=v1

mpi
version=v2

callpath
version=v3

dyninst
version=v4

libelf
version=v5

libdwarf
version=v6

Resolved Graph

Solver

B version v2, defines t2

f(t1) g(t1, t2)

h(t3) i(t1, t3)

Compatibility Models

We aim to integrate binary compatibility checks into dependency solvers

27
LLNL-PRES-811108

§ Currently, software curation effort is duplicated
across packaging ecosystems
— Each has different assumptions that can affect

compatibility
— Each must be maintained in a different, closed world
— Humans maintain metadata about packages for each

§ The C++ ecosystem suffers from many of the same
issues as HPC

§ The BUILD project aims to unify these domains
— Build a model for binary dependency solving that can be

used by many package managers
— Initially implement in Spack
— Export tools and solvers for other packaging ecosystems

§ Ideally, not every system will need its own strategy
for managing native dependencies

Work on BUILD can be used across many package ecosystems

Spack
xSDK

Pants

Linux Distributions

Monolithic repositories (Live-at-Head)

Scientific Software Ecosystem

Language-specific package managers

Cargo Rubygems

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

