Reusing dependencies across ecosystems:
what stands in the way?

Todd Gamblin

Advanced Technology Office

FOSDEM 2021 Livermore Computing
Dependency Management Devroom

LLNL-PRES-811108 B Lawrence Livertnoré
i i i : National Laboratory

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE:
AC52-07NA27344. Lawrence Livermore National Security, LLC

Software complexity is increasing dramatically

« Multi-physics = Applications today are highly integrated

JElB @ National Security — HPC simulations use many numerical libraries and

Drivers ~ua hysics packages
e Cognitive Simulation bRy P g

— Increasingly, Al stacks are being integrated into
Y traditional physics workflows

ware- "ML Stacks = Getting performance requires us to use all the

Soft '
: e Containers
Com p]ex|ty « Cloud APIs available hardware

— GPU, fast network, processor

|| .
o CPU Architectures Frequently, we also want to reuse native

Hardware | dependencies
Diversity

* Accelerators — System libraries

— Vendor-supplied drivers, runtime libraries, compilers

Integrating at this scale requires reusing code from many software ecosystems ‘) >

‘ Lawrence Livermore National Laboratory NA‘ ‘(fi"‘, 2

LLNL-PRES-811108 National Nuclear Security Administration

Some fairly common (but questionable) assumptions

= 1:1 relationship between source code and binary (per platform)
— Good for reproducibility (e.g., Debian)
— Bad for performance optimization

= Binaries should be as portable as possible
— What most distributions do
— Again, bad for performance

= Toolchain is the same across the ecosystem
— One compiler, one set of runtime libraries
— Or, no compiler (for interpreted languages)

Outside these boundaries, users are typically on their own >

‘ Lawrence Livermore National Laboratory N A‘ 513‘1 3
LLNL-PRES-811108 o

High Performance Computing (HPC)

violates many of these assumptions Some Supercomputers
= Code is typically distributed as source

— With exception of vendor libraries, compilers Current
= Often build many variants of the same package Oak Ridge National Lab RIKEN

. . Fujitsu/ARM a64fx
— Developers’ builds may be very different Power9 / NVIDIA

— Many first-time builds when machines are new

= Code is optimized for the processor and GPU Upcoming ~
— Must make effective use pf the hardware Lawrence Berkeley G
— Can make 10-100x perf difference National Lab Argonne National Lab

AMD Zen / NVIDIA Intel Xeon / Xe

Rely heavily on system packages
— Need to use optimized libraries that come with machines

— Need to use host GPU libraries and network FRC)'NTIER

= Multi-language Oak Ridge National Lab .
— C, C++, Fortran, Python, others AMD Zen / Radeon Lawl';lea':fgn"a'}’f:;wre
all in the same ecosystem AMD Zen / Radeor| .
Egﬁ_
‘ Lamf_ggss_lgi\:ﬁ;more National Laboratory WNM A'm, Mif_o‘é/ 4

Supporting accelerated architectures require more components,
and more complexity in the software stack

MEEM Einite Element (pre) Exascale Machines

Library

Kernels Backends Hardware

OCCA

libCEED

FtINTER

e e

e
Added for cross-platform i
GPU support

= MFEM has redesigned memory management and added 6 libraries
— MFEM has not yet started to support the Intel GPUs on Aurora

= El Capitan will have a new, rapidly changing set of libraries, compilers, and language runtimes

‘ Lawrence Livermore National Laboratory

LLNL-PRES-811108

HPC simulations rely on icebergs of dependency libraries

MFEM: LBANN: Neural Nets for HPC
Higher-order finite elements — 2B —
31 packages, i

69 dependency edges 'jf}{}.l =

= ——
==

py-pitlon

N e

e E—

§\',};‘17c‘5 - lj\‘;“‘:‘:'?}:’iizlgé"‘l" 71 packages
‘t \“é"jﬂ""r 188 dependency edges

MuMMI: Cancer/drug interaction modeling

Spack enables Software distribution for HPC

* Spack automates the build and installation of scientific software
* Packages are templated, so that users can easily tune for the host environment

No installation required: clone and go

$ git clone https://github.com/spack/spack
$ spack install hdf5

Simple syntax enables complex installs

$ spack install hdf5@1.10.5 $ spack install hdf5@1.10.5 cppflags="-03 —g3"
$ spack install hdf5@1.10.5 %clang@6.0 $ spack install hdf5@1.10.5 target=haswell
$ spack install hdf5@1.10.5 +threadsafe $ spack install hdf5@1.10.5 +mpi “mpich@3.2

* Ease of use of mainstream tools, with flexibility needed for HPC tuning O github.com/spack/spack

* Major victories:
* Fugaku OSS software stack deployment
* Deployment time for 1,300-package stack on Summit supercomputer reduced from
2 weeks to a 12-hour overnight build
» Used by teams across U.S. Exascale Computing Project to accelerate development

Lawrence Livermore National Laboratory
LLNL-PRES-811108

Spack environments enable users to build customized stacks

from an abstract description

Simple spack.yaml file

Dependency
packages
. build
install .
project
spack.yaml file with Lockfile describes
names of required exact versions installed

dependencies

= spack.yaml describes project requirements

= spack.lock describes exactly what versions/configurations were
installed, allows them to be reproduced.

= Frequently used to maintain configuration along with Spack
packages.

— Versioning a local software stack with consistent compilers/MPI
implementations

= Allows users to specify external packages to integrate

spack:
include external configuration
include:
- ../special-config-directory/
- ./config-file.yaml

add package specs to the “specs’ list
specs:

- hdf5

- libelf

- openmpi

Concrete spack.lock file (generated)

Lawrence Livermore National Laboratory
LLNL-PRES-811108

{
"concrete_specs": {
"6s63s02kstp3zyvjezglndmavy613nul": {
"hdf5": {
"version": "1.10.5",
"arch": {
"platform": "darwin",
"platform_os": "mojave",
"target": "x86_64"
}l
"compiler": {
"name": "clang",
"version": "10.0.0-apple"
I
"namespace": "builtin",
"parameters": {
"cxx": false,
"debug": false,
"fortran": false,
"hl": false,
"mpi": true,

Build integration complexity has caused large delays in the
MuMMI developer workflow

= LLNLUs MuMMI code is a used to model drugs,
including cancers and, more recently, COVID-19

= When standing up Sierra, the team was at the mercy of constant system updates

Determine Fix
system library Build code bugs/configs Productivity! OS update
configurations based on errors

Application
breaks

= We use system dependencies (MPI, compilers) to:
— get the best performance from the machine.
— avoid long build times

A
2R\
Di Natale et al. A Massively Parallel Infrastructure for Adaptive Multiscale Simulations: Modeling RAS Initiation Pathway for Cancer. In Supercomputing 2019 (SC’19). 2019[tpaper.

‘ Lawrence Livermore National Laboratory INY

LLNL-PRES-811108

opengl:

. . . paths: . ~ 100 lines, 20 pinned system dependencies
BUlId Integratl s e ! configured per machine e

MuMMI dev et

openglu@l.3.1: /usr

buildable: False

Lock down which MPI we are using
mvapich2:
paths:
clang mvapich2
mvapich2@2.3%clang@9.0.0 arch=linux-rhel7-ivybridge: /usr/tce/packages/mvapich2/mvapich2-2.3-clang-9.0.0
gcc mvapich2
mvapich2@2.3%gcc@8.1.0 arch=linux-rhel7-ivybridge: /usr/tce/packages/mvapich2/mvapich2-2.3-gcc-8.1.0
intel mvapich2
mvapich2@2.3%intel@19.0.4 arch=linux-rhel7-ivybridge: /usr/tce/packages/mvapich2/mvapich2-2.3-intel-19.0.4
buildable: False

= LLNL's MuMMI
including cance

When standiy

Determine Fix
system library Build code bugs/configs Productivity! OS update
configurations based on errors

—J

= We use system dependencies (MPI, compilers) to:
— get the best performance from the machine.
— avoid long build times

Application
breaks

\\\\\

%
Di Natale et al. A Massively Parallel Infrastructure for Adaptive Multiscale Simulations: Modeling RAS Initiation Pathway for Cancer. In Supercomputing 2019 (SC’19). 2019[/ t)plhper

Lawrence Livermore National Laboratory N A‘ .'1 10

LLNL-PRES-811108 National Nuclear Security Administration

Transitive dependency requirements can cause cascading issues

nnnnnnnn

oy mdanalyss o e < O\ \ femepenn] —~ | el >~ e~ | || | \ (e

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

= Team “just” needed a new version of Keras
— which needed a new version of Theano
— which needed a new version of Numpy
— which needed a newer version of OpenBLAS
— But the team was using the system OpenBLAS, which was too old
— Team had to build several versions of OpenBLAS before they found e e
one compatible with all other packages in the DAG ZARN
— Then had to rebuild the entire stack for ABI compatibility T B (7] [vomeen) \ (v oriararommass) | (mr-meretoriie)

aaaaaaaa

vvvvvvv

> 70 packages

= This particular issue consumed 36 person hours

= Frequent OS updates causing ABI incompatibilities between Flux, PMI,

L

/aw/

and the system MPI cost hundreds of person hours \£

vad
‘ Lawrence Livermore National Laboratory N A‘ o4 11

LLNL-PRES-811108 National Nuclear Security Administration

Other teams (Axom, Serac, xSDK, E4S) have similar issues

with managing configuration complexity

= Teams really like to lock versions down for testing:
— Axom team tests on several systems and pins about 20
package versions to consistent (at the time) values
— Serac team pins more system versions than this
— xSDK and EA4S stacks from ECP pin specific versions for each
package

= Incompatibilities arise and builds fail in one or both
of two ways:

1. Spack upgrade leads to failure because new versions and

options enter the Spack repository that are incompatible
2. OSupgrades at a local site change local versions
underneath a package

= |nevitably, this version locking effort is spent over
and over again for subsequent releases

aaaaa

xSDK

~21 core libraries
~70 total packages

Lawrence Livermore National Laboratory
LLNL-PRES-811108

Even outside of HPC, dependencies are the most frequent cause
of build errors and software release delays

Types of errors in Factors perceived to cause release delays
26.6 million builds at Google among 491 developers at ING
dependencies
100% Intrastructure
90% o . .
o 0% e —— = Developers avoid updates to avoid
§ security testing .]
o T procedure MEEG—_——S— problems with dependencies,
2 60% | I
bugs .
% 50% 1 scheduling —— Ieadlng to:
o o/ . e,
g aces requiements M— — Security vulnerabilities
g 30% 1 Java unaligned priorities T— L k f f
& oou -] oty cmcrance, — Lack of performance
10% | - B code review M — Stagnation as upgrades become
0% ‘ ‘ — —- ‘ lacking resources T g pg .
& © & "~ harder and harder over time
(Ske Qv o" poor system design O Non-rapid Releases
& miscommunication T ® Rapid Releases
Category code integration 1
[T T T 1
“our study clearly shows that better tools to resolve 0 ° 10 19 2
dependency errors have the greatest potential payoff” Percentage of Responses
Survey of 26.6M builds by 18K developers at Google. Survey of 491 individuals from 691 teams at ING.
Seo et al., Programmers’ Build Errors: A Case Study (at Kula et al., Releasing fast and slow: an exploratory case
Google). ICSE 2014. study at ING. ESEC/SIGSOFT FSE 2019.

Lawrence Livermore National Laboratory
LLNL-PRES-811108 National Nuciear Security Administration

Three main ways to deal with dependencies have emerged
in the past 10-20 years

- Bundled Distribution Semantic Versioning Live at Head

Linux distributions (Red Hat, Debian) Spack Google, Facebook, Twitter
E4S, xSDK, Anaconda NPM, Cargo, Go
Spack with locked versions Most language dependency managers
Curate a large set of mutually compatible Use uniform version convention, Everything in one repository,
dependencies Solve for compatible set Developers test changes with all dependents
Stability (if software is included) Frequent updates Frequent updates
Only relies on local information Stability, consistency
Works in theory All changes tested
Infrequent updates Versions are coarse Doesn’t scale beyond a single organization
High packaging/curation effort Developers over-constrain/over-promise High computational cost of testing
Lack of flexibility Errors start to dominate at scale Lack of flexibility (typically just one target env.)

= All of the approaches have serious drawbacks

= Need a way to guarantee stability, frequent updates, and version/config flexibility

Taxonomy c/o T. Winters et al. Software Engineering at Go| 2!)2\0

Lawrence Livermore National Laboratory INY
LLNL-PRES-811108 Nabional Nuclear Security Administration

The fundamental problem with integrating native dependencies
is lack of compatibility information

In workflows we’ve seen so far: MuMM]
[[. [
1. No information on how system libs were built

2. Build repeatedly to find compatible libraries I Conduit
3. Hard constraints (pinned versions, etc.) hide
information and limit choice Community
Package

Repository

Each team ends up curating its own configuration

with baked-in, incompatible assumptions _ _ _
If all projects add restricted versions,

conflicts will eventually arise that prevent
all packages from building.

‘ Lawrence Livermore National Laboratory N A‘ 15

LLNL-PRES-811108

We'd really like to be able to reuse binary packages
as we find them

1. When OS updates happen underneath a stack:
— Know what changed by examining the binaries’ ABI
— Identify what in the stack is no longer compatible
— Rebuild compatible configurations

2. When user requirements change (e.g., due to a new version):
— Know which packages need to change to meet the new requirements
— Identify existing binaries (system or packaged) that satisfy the requirements
— Install binaries or rebuild as necessary

3. When information is not available:
— Extrapolate what and how to build based on past, similar builds

We will enable binary code reuse to reduce iteration in developer workflows

. . o7
‘ Lawrence Livermore National Laboratory NVYSE 6
LLNL-PRES-811108 National Nuclear Security Administration

We're kicking off the BUILD project at LLNL
to address some of these issues

Models Binary Analysis Dependency Solvers
What makes How to .
S How to find
software packages assess compatibility . . S
I . > valid configurations?
compatible? automatically?
¢ What determines binary ¢ How to reconstitute interface ¢ Which NP-complete problem
compatibility of functions and information from binaries? solver should we use?
data structures? ¢ ASP? SMT?
Research
) ¢ How to know what data types
Questions * How can we model changes are used by other binaries? « How can we encode large
over time? problems for efficient solves?
¢ How to efficiently manage
* How do changes affect other debug information? ¢ What heuristics can be used to
packages in a graph? accelerate the solve?
* How to associate ABI
e Which changes are breaking? information with versions? * Do we need to develop new

solver algorithms?

BUILD: Binary Understanding and Integration Logic for Dependencies

Lawrence Livermore National Laboratory
LLNL-PRES-811108

What’s missing from current package ecosystems?

Current model is coarse

Humans define rules like these:
— A version 1.0 depends on B version 2.0
— B version 2.0 depends on C version 3.0 or 4.0

‘ A version v1 ‘

v C++ runtime
{ B version v2 J version v4
(not modeled)

Humans update rules each time there is a new release

Specification is incomplete
— Runtime libraries, compilers, etc. are not modeled

— Not clear whether updates to C require us to rebuild A
 no ABI information

C version v3

No place for global constraints in the model, e.g.:
— e.g., “must link with C++ compiler if any dependency uses C++”
— “gcc and clang are ABl incompatible when ...”

‘ Lawrence Livermore National Laboratory

LLNL-PRES-811108

Lack of ABI information about runtime libraries has bitten our
code teams over and over again

= C++11 brought about binary incompatible

changes to the C++ runtime library
— All C++ codes had to be rebuilt with new compilers

to be compatible
— New builds could not be linked with old ones @

= The C++ library version was not bumped, so
strange runtime errors would happen

= ABI models would show us the differences in
data type definitions between old and new

Incompatible! Already-installed

= This type of error happens frequently when dependency

mixing Fortran compilers, as well. ,» Compiler-imposed,
implicit dependg <y

‘ Lawrence Livermore National Laboratory

LLNL-PRES-811108

Semantic versioning is the de-facto standard for conveying
compatibility information

4

.
Minor Version

Increment for backward-compatible added functionality/

Major Version
Increment only when changes break compatibility.j o o

Patch Version
Increment for backward-compatible bugfixes.

= Pitfalls:
— Applies to the whole package, but packages may only depend on a subset of functions
— May over-promise: packages may break despite developers’ intentions
— May over-constrain: pinned dependency versions are common but lead to false unsatisfiable cases

= Relies on developers to specify versions correctly
— Relies on broad community participation

‘ Lawrence Livermore National Laboratory N A‘

LLNL-PRES-811108 National Nuciear Security Administration

https://semver.org/

Humans do not accurately specify version information

Rust (Cargo) NPM (JavaScript) PHP (Packagist) Ruby (Gems)

=
o

o
)

4 Il compliant
[permissive
-4 Bl restrictive

° o
» o

o
IN)

prop. of required packages

0.0 -
2013 2014 2015 2016 2017 2013 2014 2015 2016 2017 2013 2014 2015 2016 2017 2013 2014 2015 2016 2017

= Plots show version restrictions across 4 package ecosystems.
— Permissive leaves room for lots of room for incorrect builds
— Restrictive rules out builds that would work
— Non-specialized (white) leaves everything open (no constraints)

= HPC ecosystem is most like Ruby (right) — dated, with many permissive constraints

— Most projects don’t use semantic versioning and won’t switch
— Likelihood of build errors is very high

‘ Lawrence Livermore National Laboratory

LLNL-PRES-811108

What if the package manager could model more aspects of ABI?

Current model is coarse Complete model represents how changes affect code
. |
L A version v1 J L S) j(t1)
f(t1) g(t1, t2) |
v C++ runtime v v k(tl) Cit ti . 4
L B version v2 J version v4 L B version v2, defines t2 run |n.1e version v
defines t1
(not modeled)
] h(t3) i(t1, t3)
. 2 \ 4 It1
SRR L C version v3, defines t3 J‘ (t1)
= Libraries at call granularity: = Runtime libraries behind compilers = Changes in the graph
— Entrycalls — C++, OpenMP, glibc — “If C changes, what needs to be
— Exitcalls — GPU runtimes rebuilt?”

— Data type definitions & usage — We will model semantics of interfaces

— “If h(t3) changes, is B still correct?

This model allows us to reason about compatibility >

‘ Lawrence Livermore National Laboratory N A‘ 2.3‘1 22

LLNL-PRES-811108 National Nuclear Security Administration

A common ABI issue: containers with hardware dependencies

Containers in industry are used in an isolated way !solated container usage model

— No need (until recently) to use special hardware fHost (RHEL?) (c A— ~
— Container has its own OS image ontainer

Application

HPC cpntamers assume tighter coupling between St VP! . oy
containers and host ABI Compatible
— Choose MPI or other layer as an interface glibc 2.17

« Omits transitive library considerations \.
« Works until it doesn’t — no way to check or warn

Attempt to use host MPI gone wrong

= Example: glibc compatibility issue at NERSC (right) (Host (RHEL?) — ~
bindmount Container (RHEL6)
= We will build models to check configurations and -7 - T~
ensure binary compatibility in the full stack YT
— Here we could fix the problem by including glibc 2.17 ABI —
— Our models will tell us that this is what is needed T YRy 'ncompatible! -
7 D))

‘ Lawrence Livermore National Laboratory NA‘ ‘(f;"g‘ 23

LLNL-PRES-811108 National Nuclear Security Administration

To reason about ABI, we need better binary tools

101
on

101
on

101

on

0S-provided libraries = Binaries are the ground truth for compatibility

— They contain the functions and data types we must link against
— Can’t tell compatibility directly from source (depends on build)
— Binaries are final output

Stripped proprietary binaries

Prebuilt packages
= We often want to be able to make use of existing binaries, but
it’s difficult to do in a cross-platform way

= There aren’t tools that can tell us when the thing we’ll build or

link is actually compatible with an existing binary

— Metadata and OS conventions vary by system

— Debug information may not be available

— Other communities’ builds may be very different from ours

We need better debug information to rely on prebuilt packages.

- " 77
‘ Lawrence Livermore National Laboratory N A‘ zf; 24
LLNL-PRES-811108 National Nuclear Security Administration

With the right tools, we can extract
more compatibility information from binaries

D

101 . . .

o11 | OS-provided libraries f(t1) g(tl, t2) entry points
ﬂ A 4 A 4

. : . data structures &
o Stripped proprietary binaries Binary Analysis L B version v2, defines t2 J cemantics
H - -
})2} Prebuilt packages "h(t3) "l(tl, t3) exit points

Compatibility Models

= Libraries like libabigail and dyninst can do parts of this with debug information (DWARF)
— Typically requires accurate debug information, which is not always shipped with the system

= Tools like debuginfod may allow us to look up debug information without having it installed

— Not available for all distros
— Needs to be on the critical path for package managers for broader availability

= Still some gaps even with debug information:

— Dynamically loaded libraries
— Can’t tell statically which ones are used [£

‘ Lawrence Livermore National Laboratory
mmmmmmmmmmmmmmmm

LLNL-PRES-811108

With compatibility information, we can improve the way
we do dependency solving

Human-generated constraints Compatibility Models

Package managers produce valid

but not sound graphs.
— ABI info gives us what we need for soundness

fit1) g(t1, t2)

[B version v2, defines t2 J

h(t3) i(t1, t3)

Solvers could use models generated by binary

analysis (ground truth)
Solver

Past 10-20 years have brought enormous

improvements in solver technology

— CDCL algorithms
— Optimizing SMT and ASP solvers

Time is right to attack packaging with better solving

‘ Lawrence Livermore National Laboratory

LLNL-PRES-811108

Work on BUILD can be used across many package ecosystems

= Currently, software curation effort is duplicated

across packaging ecosystems

— Each has different assumptions that can affect
compatibility

— Each must be maintained in a different, closed world

— Humans maintain metadata about packages for each

= The C++ ecosystem suffers from many of the same
issues as HPC

= The BUILD project aims to unify these domains
— Build a model for binary dependency solving that can be
used by many package managers
— Initially implement in Spack
— Export tools and solvers for other packaging ecosystems

= |deally, not every system will need its own strategy
for managing native dependencies

g Linux Distributions

‘Rednat Aarchlinux @ @ &n
\

USE. buntu centOS)

g Monolithic repositories (Live-at-Head)

v Bazel I,Pa nts

Language-specific package managers

4 C Rub
| & Careo 00 PIP (@) Rubygems)

(Scientific Software Ecosystem \

& Spack ES
9 ¢

XSDK. .
ANACONDA v “15)

‘ Lawrence Livermore National Laboratory

LLNL-PRES-811108

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

. = product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
awrence Ivermore commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC.

u
Natlonal I aboratory The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or

Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

