
Virtualization SW. Eng. @ SUSE

Dario Faggioli

dfaggioli@opensuse.org

dariof

@DarioFaggioli

https://dariofaggioli.wordpress.com/
https://about.me/dario.faggioli

“By The Power Of
 Toolbox!”

mailto:dfaggioli@opensuse.org
https://twitter.com/DarioFaggioli
https://dariofaggioli.wordpress.com/
https://about.me/dario.faggioli

About Me What I do

● Virtualization Specialist Sw. Eng. @ SUSE since 2018, working on Xen, KVM,
QEMU, mostly about performance related stuff

● Daily activities ⇒ how and what for I use my workstation
○ Read and send emails (Evolution, git-send-email, stg mail, ...)
○ Write, build & test code (Xen, KVM, Libvirt, QEMU)
○ Work with the Open Build Service (OBS)
○ Browse Web
○ Test OSes in VMs
○ Meetings / Video calls / Online conferences
○ Chat, work and personal
○ Some 3D printing
○ Occasionally play games
○ Occasional video-editing
○ Maybe scan / print some document

● And all that, I do it with an openSUSE MicroOS, an immutable OS

https://www.suse.com/
https://xenproject.org/
https://www.linux-kvm.org/page/Main_Page
https://www.qemu.org/
https://openbuildservice.org/

What is MicroOS

● Immutable single purpose OS, based on Tumbleweed
○ born as container host but not limited to that use case

■ https://microos.opensuse.org/
■ https://en.opensuse.org/Portal:MicroOS

● Maybe, check this other talks (from yesterday):
○ An User & Developer Perspective on Immutable OSes
○ openSUSE MicroOS, a platform for everything from containers,

to IoT, and even the desktop

https://microos.opensuse.org/
https://en.opensuse.org/Portal:MicroOS
https://fosdem.org/2021/schedule/event/developer_perspective_on_immutable_os/
https://fosdem.org/2021/schedule/event/opensuse_microos/
https://fosdem.org/2021/schedule/event/opensuse_microos/
http://www.youtube.com/watch?v=nIwqzGbX-oc
http://www.youtube.com/watch?v=nIwqzGbX-oc
http://www.youtube.com/watch?v=8gGjcKdOWIc
http://www.youtube.com/watch?v=8gGjcKdOWIc
http://www.youtube.com/watch?v=s5Pj52ffGfw
http://www.youtube.com/watch?v=s5Pj52ffGfw
http://www.youtube.com/watch?v=i8c0mg_mS7U
http://www.youtube.com/watch?v=i8c0mg_mS7U

MicroOS: Your Immutable Desktop
Single Purpose ⇒ Your Desktop / Workstation
● Rolling, but super stable
● Still early stage ~= ALPHA state

○ But usable already
○ (it’s actually what I’m using since a few months)

● Growing community of users
● Small community of developers

○ We need your help! :-)

Psst… For now, right after install, remember to do this:
● # echo "<yourusername>:100000:65536" > /etc/subuid

echo "<yourusername>:100000:65536" > /etc/subgid

http://www.youtube.com/watch?v=7p4y9Meyy0M
http://www.youtube.com/watch?v=7p4y9Meyy0M
http://www.youtube.com/watch?v=cZLckDUDYjw
http://www.youtube.com/watch?v=cZLckDUDYjw
http://www.youtube.com/watch?v=ASSkQH9kNa0
http://www.youtube.com/watch?v=ASSkQH9kNa0
http://www.youtube.com/watch?v=6F7iCntjWB8
http://www.youtube.com/watch?v=6F7iCntjWB8

Other Immutable Desktop OSes
● Fedora Silverblue

 https://silverblue.fedoraproject.org/
“[...] unlike other operating systems, Silverblue is
 immutable. [...] Silverblue’s immutable design is
 intended to make it more stable, less prone to bugs,
 and easier to test and develop.”

● EndlessOS
 https://endlessos.com/
 “Endless is designed to feel natural and intuitive, making it easy to use
 even if you have little or no computer experience.”

https://silverblue.fedoraproject.org/
https://endlessos.com/

Installing Packages

Filesystems are real-only (that’s the immutability!)

● On MicroOS, zypper does not work.
Instead:
○ transactional-update

■ $ sudo transactional-update pkg install git-core
$ systemctl reboot

■ $ sudo transactional-update shell
 # zypper ref
 # zypper install git-core
 # exit
$ systemctl reboot

● Reboot always necessary, for seeing and using new Packages
○ See: The Transactional Update Guide

https://kubic.opensuse.org/documentation/transactional-update-guide/transactional-update.html

Are We Constantly Rebooting ?
This is my MicroOS workstation. Judge yourself:

How so?
● For apps:

○ Flatpak
● For troubleshooting or debugging:

○ toolbox
● For development or “non-Flatpaked” apps:

○ toolbox

Installing/removing packages on the base OS tends to zero

https://flatpak.org/

What’s a Toolbox ?
An easy way to start a read-write environment:
● With your user configured
● You have your home there, in its usual place
● Your files have the proper owner, group, permissions
● You reach your SSH agent (running on the host)
● You can launch graphical apps
● You have sudo
● You can install and remove packages

Sounds pretty handy:
● For installing apps not available/not working as Flatpaks
● For doing development inside it
● For troubleshooting and debugging the immutable OS “host”

Also:
● You can have multiple toolbox-es, active at the same time

Toolbox
Implemented as a privileged podman container
● Silverblue & EndlessOS

○ github.com/containers/toolbox
○ Was Bash, now Go (EndlessOS still using the old Bash version)
○ Works both “rootless” and as root

● openSUSE MicroOS (& Kubic)
○ github.com/kubic-project/microos-toolbox
○ Bash
○ Works both “rootless” and as root

BEWARE: “privileged container” & ”can run as root”
○ It’s not a security enhancing tool
○ <<I can do whatever I want, I’m in a container, I won’t damage

or corrupt the base OS, right?>> ⇒ Not the right mindset
○ You’re not less secure or safe than when you’re working directly

on the base OS. You’re not more secure or safe either!

https://github.com/containers/toolbox
https://github.com/kubic-project/microos-toolbox

MicroOS Toolbox

● A shell script that launches a privileged container
○ Check: toolbox - bring your own (debugging) utilities with you
○ Born with the troubleshooting use-case in mind. Evolved since then
○ Under active development, to improve it even further

● The container can be run:
○ As root

■ ⇒ When you are root inside the toolbox, you’re kind of root on the
host

■ (you may or may not also have your regular user in the toolbox, this
depends on other parameters)

○ As your regular user
■ ⇒ Even if you are root in the toolbox, you are not root

on the host
■ (you always have your regular user inside the toolbox)
■ Works thanks to “rootless podman”

https://kubic.opensuse.org/blog/2019-10-22-toolbox/
https://developers.redhat.com/blog/2020/09/25/rootless-containers-with-podman-the-basics/

MicroOS Toolbox Config File

● MicroOS toolbox has a config file:
○ $ cat ~/.toolboxrc

REGISTRY=registry.opensuse.org
IMAGE=opensuse/toolbox:latest
TOOLBOX_NAME=special-debug-container
TOOLBOX_SHELL="/bin/bash"

● TOOLBOX_NAME: for tweaking the basename of the containers
● REGISTRY + IMAGE: allows to use a different image for your toolbox-es

○ Can be overridden on command line
● TOOLBOX_SHELL: what shell --or program, for what matters-- to

 run by default
○ Can be overridden on command line

Using a Custom Container Image

Default toolbox container image:
● toolbox/latest is based on Tumbleweed.
● Really really minimal

Can be changed:
● You can have Leap toolbox-es
● You can make toolbox-es from your (Kiwi / OBS built) images
● In theory, you can have toolbox-es based on different distros

Config file:
● REGISTRY=<registry>
● IMAGE=<image>

Command line:
● toolbox -R <registry> -I <image>

toolbox -i <full_image_URI>

https://osinside.github.io/kiwi/
https://build.opensuse.org/

Different Kind of Toolbox-es (I)

● toolbox running as your user, and you can only be root inside it:
○ Useful if you “only” want to do some simple debugging and

troubleshooting of the host OS

$ toolbox # no -u ⇒ no user except root, nothing in /home
 #> whoami
 root
 #> pwd
 /
 #> # your are root already, but not “mapped” to root on host
 #> cat /proc/self/uid_map
 0 1000 1
 1 100000 65536
 #> exit
$ # you are back in the host

Different Kind of Toolbox-es (II)

● toolbox running as your user, and you are your own user inside it:
○ Useful for using toolbox for running your apps and/or as your

development environment

$ toolbox -u # -u ⇒ you will have your user, your /home, etc when inside
 $> whoami
 dario
 $> pwd
 /home/dario
 $> sudo su # you’re becoming root in container. You still won’t be
 #> # be able to touch files owned by root on the host!
 #>
 #> cat /proc/self/uid_map
 0 1 1000
 1000 0 1
 1001 1001 64536
 #> exit
 $> exit
$ # you are back in the host

● Creating and entering a toolbox that runs as your user, but has only root user
inside it:
○ Useful for using toolbox as a debugging and troubleshooting environment
○ $ toolbox # no -u ⇒ no user except root, nothing in

/home
 #> # your are root already. But root in
toolbox
 #> # does not map on root on the host

Different Kind of Toolbox-es (III)

● toolbox running as root, and you can only be root inside it:
○ Useful if you need to do serious debugging and troubleshooting

of the host OS

$ toolbox -r # -r ⇒ the toolbox runs as root on the host (started with sudo)
 #> whoami # no -u ⇒ your own user is not there, only root
 root
 #> pwd
 /
 #> # you’re root in the container and that maps with
 #> # root on the host (e.g., you’ll be able to touch files
 #> # owned by root on host)
 #> cat /proc/self/uid_map
 0 0 4294967295
 #> exit
$ # you are back in the host

Different Kind of Toolbox-es (IV)

● Toolbox running as root on the host, and you are your own user inside it:
○ Useful for using toolbox for running your apps and/or your development

environment, for things that need “special powers” and would not work
rootless

$ toolbox -r -u # -u ⇒ you will have your user, your /home, etc when inside
 $> # -r ⇒ the toolbox runs as root on the host (started with sudo)
 $> whoami
 dario
 $> pwd
 /home/dario
 $> sudo su # you’re becoming root in the container and that maps
 #> # on root in the host (e.g., you’ll be able to touch
 #> # files owned by root on host)
 #> cat /proc/self/uid_map
 0 0 4294967295
 #> exit
 $> exit
$ # you are back in the host

Tagging
You can have multiple toolbox-es
● You can create multiple (different) toolbox-es and have them ready on the

system
● You can be inside multiple (different) toolbox-es at the same time

How to distinguish? By their container’s names

● toolbox ⇒ ${TOOLBOX_NAME}-${USER}
○ toolbox-dario

● toolbox -t foo ⇒ ${TOOLBOX_NAME}-${USER}-foo
○ toolbox-dario-foo

● toolbox -u ⇒ ${TOOLBOX_NAME}-${USER}-user
○ toolbox-dario-user

● toolbox -u -t foo ⇒ ${TOOLBOX_NAME}-${USER}-user-foo
○ Toolbox-dario-user-foo

● toolbox [-u,-r] -c foo
○ foo

Alternative User Interface

An alternative UI can be used, on MicroOS toolbox (so that we’re more compatible
with Silverblue toolbox)

● Create a rootless toolbox, with your own user inside it:
○ toolbox -u
○ toolbox create

toolbox enter

● Create a “rootfull” toolbox, with your own user inside it:
○ toolbox -r -u
○ toolbox create -r

toolbox enter -r

Toolbox-es Keep Their State

● toolbox is stateful
○ Yesterday you created a toolbox, and you install stuff, change configs, etc
○ Today you stop the toolbox, you turn off the PC and take the day off
○ Tomorrow toolbox will still have all the software and all the config changes

you made

● For starting from scratch
○ Create another toolbox, with different tag (⇒ different name)
○ Remove the existing one

● Toolboxes are something in between “Pets” and “Cattles”

Managing Your Toolbox-es

● Listing running toolbox-es, created as user

○ Just list containers...

■ $ podman ps

CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES
5cb19ade1fb1 [...]toolbox:latest sleep +Inf 3 weeks ago Up 3 hours ago toolbox-dario-user

● Listing all toolbox-es created as user (running ot not)
○ $ toolbox list
○ Or just list containers again:

■ $ posman ps --all

CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES
5cb19ade1fb1 [...]toolbox:latest sleep +Inf 3 weeks ago Up 3 hours toolbox-dario-user
502722d98390 [...]toolbox:latest sleep +Inf 3 weeks ago Exited toolbox-dario-user-dev

Managing Your Toolbox-es

● Listing toolbox-es created as root:
○ Running ones:

■ $ sudo podman ps
○ All of them:

■ sudo podman ps --all
■ toolbox list -r

● Removing toolbox-es
○ Created as user:

■ $ podman rm <toolbox_name/ID>
○ Created as root:

■ $ sudo podman rm <toolbox_name/ID>

Toolbox For TroubleShooting

As said, toolbox is really handy for debugging and troubleshooting

For example, you need to do a:
$ strace ls
● You can try… but strace is not installed!
● Install it with and then reboot before being able to use it ? NO!

$ toolbox enter # runs as your user on the host
 $> sudo su
 #> zypper in strace # root in toolbox. Does not map
 # to root on the host in this case
 #> strace ls # here you go your strace!

Toolbox For TroubleShooting

As said, toolbox is really handy for debugging and troubleshooting

For (another) example, you need to:
$ sudo nmap -sS 192.168.0.2
● Again, nmap is not there, and you don’t want to reboot

$ toolbox enter -r # we need “root on host”, to do SYN scan
 $> sudo su
 #> zypper install nmap
 #> nmap -sS 192.168.0.2

Toolbox for Development:
Hacking On QEMU
● Dependencies for building QEMU from sources:

○ bc bison bluez-devel brlapi-devel bzip2 ccache clang cyrus-sasl-devel flex gcc gcc-c++
gettext-tools git glib2-devel glusterfs-devel gtk3-devel gtkglext-devel gzip hostname
libSDL2-devel libaio-devel libasan4 libcap-devel libcap-ng-devel libcurl-devel
libfdt-devel libgcrypt-devel libgnutls-devel libjpeg62-devel libnettle-devel
libnuma-devel libpixman-1-0-devel libpng16-devel librbd-devel libseccomp-devel
libspice-server-devel libssh-devel libssh2-devel libtasn1-devel libudev-devel
libxml2-devel lzo-devel make makeinfo multipath-tools-devel ncurses-devel perl
pkg-config python3 python3-PyYAML python3-Sphinx rdma-core-devel snappy-devel sparse
tar usbredir-devel virglrenderer-devel vte-devel which xen-devel zlib-devel

○ Install with transactional-update … … … and reboot
every time you forget one?
■ No!

● Toolbox to the rescue:
○ $ toolbox enter -c devel

 $> sudo zypper in <all_the_dependencies_above>
 $> cd <your QEMU sources directory in your home>
 $> <do your changes>
 $> <build it>

https://www.qemu.org/

Toolbox for Development:
Working With Open Build Service
Requires installing packages, using VMs for building, etc.
● toolbox , what else ?
● I need a -r one, for mounting filesystems in the build VM (I think)

$ toolbox enter -r -t devel
 $> zypper ar https://download.opensuse.org/[...]/openSUSE_Tumbleweed/openSUSE:Tools.repo
 $> zypper in cpio osc build [...]
 $> osc mkpac / co / vc
 $> [...]
 $> osc vc
 $> osc build --vm-type=kvm
 $> osc commit

https://download.opensuse.org/repositories/openSUSE:/Tools/openSUSE_Tumbleweed/openSUSE:Tools.repo

Toolbox for Graphical Apps

● They work too ⇒ No need installing them in base OS
● $ toolbox -u

 $> sudo zypper in gedit virt-manager
 $> gedit
 $> virt-manager

Errr… What?

Toolbox for Graphical Apps

● They work too ⇒ No need installing them in base OS
● $ toolbox -u

 $> sudo zypper in gedit virt-manager
 $> sudo zypper in xorg-x11-fonts-core
 $> sudo zypper in adwaita-icon-theme
 $> gedit
 $> virt-manager

Ok, now we’re
 Talking

(are we missing some deps
somewhere, maybe?)

Toolbox for “GL” Graphical Apps

● You want to use Kernelshark:
○ $ toolbox -u

 $> kernelshark
 libGL error: No matching fbConfigs or visuals found
 libGL error: failed to load driver: swrast
 QOpenGLWidget: Failed to create context
 QOpenGLWidget: Failed to create context
 qt.qpa.backingstore: composeAndFlush: QOpenGLContext creation failed
 qt.qpa.backingstore: composeAndFlush: makeCurrent() failed
 ...

● I have NVIDIA with proprietary drivers here. What if…
○ $ toolbox

 $> sudo zypper addrepo https://download.nvidia.com/opensuse/tumbleweed NVIDIA
 $> sudo zypper ref
 $> sudo zypper in x11-video-nvidiaG05

● It installs stuff like:
○ kernel-default-devel , nvidia-gfxG05-kmp-default ,

nvidia-glG05 … … Inside the container ?!?!

https://download.nvidia.com/opensuse/tumbleweed

Toolbox for “GL” Graphical Apps

Well, it works!

Real scenario:
● I make a change in the Linux kernel
● I make a change in QEMU
● I make a change in Libvirt
● I want to build and also test my changes

How it works for me:
● I work on the changes inside my development toolbox

○ Run as root on the host… it’s easier
○ toolbox-dario-user-devel

$ toolbox enter -r -t devel
 $> <work on Linux kernel> && <build the Linux kernel>
 $> <work on QEMU> && <build QEMU> && <install my QEMU>
 $> <work on libvirt> && <build libvirt> && <install my libvirt>

Working on Libvirt, QEMU & Kernel

Working on Libvirt, QEMU & Kernel

● Still in the “dev toolbox”, I can start my modified libvirtd
○ Make it listed on TCP (no socket activation)
○ $ toolbox enter -r -c devel

 $> <work on QEMU> && <build QEMU> && <install my QEMU>
 $> <work on libvirt> && <build libvirt> && <install my libvirt>
 $> sudo ./build/src/virtlogd &
 $> sudo ./build/src/libvirtd -v -l

● From (either the same or a different) toolbox I start virsh
and/or virt-manager

● I can connect to my modified libvirtd
○ $ toolbox enter -c apps # this is my user/dev apps toolbox

 $> virsh --connect=qemu+tcp://localhost/system
 $> virsh # list --all
 Id Name State

 - Tumbleweed shut off

● I can define or edit a VM so that it boots my modified QEMU & kernel

Working on Libvirt, QEMU & Kernel

libvirtd running in a tmux session
running inside toolbox-dario-user-devel

Virt-manager running in
toolbox-dario-user-apps

VM started by virt-manager
from toolbox-dario-user-apps .
VM is actually running inside
toolbox-dario-user-devel ,
using my modified QEMU

It’s connecting to libvirtd running
in toolbox-dario-user-devel

Where’s the Catch ?

<<It sounds complex, having to manage all those toolbox-es that you have around!>>
a real comment that I got after a presentation)
Answer: Not really

My Setup:
● I have: 2 toolbox-es in total, really (my “pet toolbox-es”)
● I may fire up some throwaway ones during the day, depending on what I do

(“cattle toolbox-es)
My “morning routine”:

1. Open gnome-terminal
2. toolbox enter -r -t devel ⇒ toolbox-dario-user-devel
3. Start tmux inside that toolbox

a. all panes will be inside the toolbox already
b. I’m pretty much in there all the time

4. Maybe, in other terminal tabs:
a. toolbox enter -t apps ⇒ toolbox-dario-user-apps)
b. For non-flatpak apps, for testing, etc

MicroOS toolbox “vs”
Silverblue toolbox
Different projects
● Started at different times, with different goals:

○ MicroOS / Kubic had no desktop flavour
○ Goal was “Only” troubleshooting

● Now they share a common goal, but:
○ MicroOS toolbox need to stay compatible with

backward compatible (don’t upset users)
○ They’re grown apart (e.g., Bash vs. Go)
○ Silverblue one is more advanced and fancy, but also complex
○ MicroOS one is very simple and yet it delivers quite well

● (My) Current goal:
○ Make the user experience similar
○ so users can jump between the two without issues

MicroOS toolbox “vs”
Silverblue toolbox
UI is almost compatible (at least!)
● Create a toolbox

○ Silverblue: toolbox create
○ MicroOS

■ Either: toolbox -u
■ Or: toolbox create

● Entering a toolbox:
○ Silverblue:

■ toolbox enter
○ MicroOS

■ Either: toolbox -u # creates it, if doesn’t exist
■ Or: toolbox enter

● Create (and enter) a toolbox as root:
○ Silverblue: sudo toolbox create && sudo toolbox enter
○ MicroOS:

■ Either: toolbox -u -r
■ Or: toolbox create -r && toolbox enter -r

● Tagging
○ Silverblue:

■ toolbox create -c foo ⇒ foo
○ MicroOS:

■ toolbox -u -t foo ⇒ toolbox-dario-user-foo
■ toolbox create -c foo ⇒ foo

● Building the toolbox from a specific image
○ Silverblue: toolbox create -i <full_image_URI>
○ MicroOS:

■ Toolbox create -R <registry> -I <image>
■ Toolbox create -i <full_image_URI>

● Removing containers and images
○ Only Silverblue:

■ toolbox rm <container>
■ toolbox rmi <container_image>

MicroOS toolbox “vs”
Silverblue toolbox

And There Are (Were?) Even More...
● Podbox, github.com/DimaZirix/podbox

○ Specifically targeting GUI apps
○ Typical usage: one (or a couple, at most) app(s) per podbox
○ E.g., podbox create firefox --gui --net --ipc --audio
○ Kind of resembles flatpaks

■ … Good idea for apps not available as such?
● Coretoolbox, github.com/cgwalters/coretoolbox

○ Reimplementation of Silverblue toolbox
○ In Rust (started when toolbox was still Bash)

■ Goal was making it more generic and flexible
■ Push toward “cattle toolbox-es” rather than “pet toolbox-es”
■ Now, however:

● (Silverblue) toolbox is no longer Bash (Go)
● (Silverblue) toolbox has been generalized a bit itself

https://github.com/DimaZirix/podbox
https://github.com/cgwalters/coretoolbox

Conclusions

● An immutable OS, like openSUSE MicroOS, can be your desktop

● It’s going to be great!
○ (Reach out if you try: t.me/openSUSE_MicroOS_Desktop)

● If you wouldn’t have a toolbox… not so much great
○ How do you do troubleshooting ?
○ How do you do development ?

● “Toolbox” is an idea, and various implementations exists

● Make your workflow fit Immutable OS + toolbox seems complicated…
 … but it’s not :-)

https://t.me/openSUSE_MicroOS_Desktop

About Myself

● Ph.D on Real-Time Scheduling, SCHED_DEADLINE

● 2011, Sr. Software Engineer @ Citrix
The Xen-Project, hypervisor internals,
NUMA-aware scheduler, Credit2 scheduler,
Xen scheduler maintainer

● 2018, Virtualization Software Engineer @ SUSE
Still Xen, but also KVM, QEMU, Libvirt;
Scheduling, VM’s virtual topology,
performance evaluation & tuning

https://www.kernel.org/doc/html/latest/scheduler/sched-deadline.html?highlight=sched_deadline
https://xenproject.org/
https://www.suse.com/
https://www.linux-kvm.org/page/Main_Page
https://www.qemu.org/
https://libvirt.org/index.html

40

