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An Introduction 
to Tracing
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What is Tracing?
Tracing allows to “record information about a program's execution
[…] used by programmers for debugging purposes, and additionally
[...] to diagnose common problems with software”

Tracing vs Logging:
● Tracing is usually much more detailed
● Tracing can be enabled and disabled at a fine-grained level
● Tracing can be very “noisy” and usually adds more overhead

What kind of software can be traced?
• System software (kernel/hypervisors)
• Applications (user level programs)
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Tracing with LTTng

Linux Trace Toolkit next generation (LTTng): “a powerful, open
Source set of tools to trace the Linux kernel and user applications
at the same time.”
https://lttng.org/

Distinctive features:
• (combined) Kernel and userspace tracing
• Trace files follows the Common Trace Format (CTF, https://diamon.org/ctf/)
• Low latency and low overhead tracing
• Traces can be analyzed offline or in real-time

https://lttng.org/
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Tracing with ftrace
Ftrace: “ftrace is a Linux kernel feature that lets you trace
Linux kernel function calls. Essentially, it lets you look into the
Linux kernel and see what it’s doing”
https://blogs.vmware.com/opensource/2019/11/12/ftrace-linux-kernel/

Distinctive features:
• Integrated in the Linux kernel
• Multiple and different tracers (function graph, stack, io, wakeup, …)
• More than 1000 events
• Specific tracers for latency analysis
• Shares infrastructure with other kernel performance tools (e.g., perf)
• Controlled from special filesystem (or specific tools)

https://blogs.vmware.com/opensource/2019/11/12/ftrace-linux-kernel/
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Comparing
LTTng and ftrace
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Installation
LTTng:
• Kernel infrastructure

• LTTng-modules
• Out-of-tree modules. Not integrated 

inside Linux kernel! :-(
• Build from source or use distro 

packages

• User space components
• e.g., lttng program
• Build from sources or use distro 

packages

Ftrace:
● Kernel infrastructure

● Already integrated inside the 
kernel

● Nothing to do! :-)

● User space components
● e.g., trace-cmd program
● Build from sources of use 

distro packages
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(Simple) Usage Example

So, let’s:

# perf bench sched pipe

And trace it’s execution with both the frameworks!
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Usage: Kernel Tracing
LTTng

# lttng create session-name \
    --output=/your/path
# lttng enable-event --kernel sched_'*'
# lttng enable-event --kernel \
    --syscall read,write
# lttng start
# perf bench sched pipe
# lttng destroy session-name

Ftrace

# trace-cmd record -p nop -e sched \
    -e syscalls:sys_enter_write \
    -e syscalls:sys_enter_read \
    -e syscalls:sys_exit_write \
    -e syscalls:sys_exit_read -- \
    perf bench sched pipe
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Usage: Userspace 
Tracing
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LTTng
liblttng-ust library:
● Provides tracef & tracelog APIs (similar to printf) or write your own “Tracepoint Provider” (

https://lttng.org/docs/#doc-c-application)
● … out of the scope of this work!

Prebuilt user space tracing helpers for:
● liblttng-ust-libc-wrapper.so, for tracing: malloc(), calloc(), realloc(), free(), ...
● liblttng-ust-pthread-wrapper.so, for tracing pthread_mutex_lock() (request and acquire 

time), pthread_mutex_unlock(), pthread_mutex_trylock()
● liblttng-ust-cyg-profile.so, for tracing (potentially) every function

Used as pre-loadable shared objects:
● $ LD_PRELOAD=liblttng-ust-pthread-wrapper.so <your_command>

https://lttng.org/docs/#doc-c-application
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Ftrace

(Next to) Nothing to be done! :-(

Only option is trace_marker (https://lwn.net/Articles/366796/)

But it is very limited
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Usage example: 
Userspace + 
Kernel Tracing
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The code
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Trace Compass Resources view
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Trace Compass Resources view
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Traces Sizes

Traces size:
• LTTng: ~ 300 MB
• Ftrace: ~ 900 MB
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Textual Analysis of 
the Traces
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Analyzing in a Terminal

LTTng

Babeltrace (version 2)
 APIs and command line tools
 Reference parser implementation for 

CTF
 https://babeltrace.org/

Ftrace

 In theory, no tool required at all:
● All there already in the special 

filesystem
 More convenient:

● trace-cmd
● https://man7.org/linux/man-pages/ma

n1/trace-cmd.1.html

https://babeltrace.org/
https://man7.org/linux/man-pages/man1/trace-cmd.1.html
https://man7.org/linux/man-pages/man1/trace-cmd.1.html
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A babeltrace2 Example
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A trace-cmd Example
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Graphical Analysis 
of the Traces
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KernelShark (v1.2)

A graphical front end for 
trace-cmd
 Per-CPU activity plot
 Per-task activity plot
 https://kernelshark.org/
Some remarks:
 Provided views are very 

clear and useful
 It’s in active development
 Lags and delays, even 

with not so big traces!

https://kernelshark.org/
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Trace Compass

Versatile traces and logs 
analyzer
 Supports multiple tracing 

formats:
 Both ftrace and LTTng!
 Provides multiple views
 https://www.eclipse.org/tr

acecompass/
Some remarks:
 Part of the Eclipse 

Framework
 Versatile and powerful
 No lags, UX stays smooth 

and fluid

https://www.eclipse.org/tracecompass/
https://www.eclipse.org/tracecompass/
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Trace Compass
Views
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Flow Control View

<<What does a task do?>>

<<What’s going on inside all
  the tasks at a given time?>>

Tasks are on “rows”

Colors correspond to different 
states/actions
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Flow Control View

With an 
ftrace 
trace

With an 
LTTng 
trace
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Resources View

<<What is a CPU doing?>>

<<What is the state of all the CPUs at a
  given time?>>

Each CPU plot (on “rows”) has:
• A thread “row”: shows the task running there
• A states “row”: colors corresponds to different 

states
• Dedicated “rows” for IRQ events
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Resources View

With an 
ftrace 
trace

With an 
LTTng 
trace
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Other views
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CPU usage view

How much CPU each task used 
(with graphs)
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System call Latency view

Duration and latency of each syscall.

View divided in the following subviews:
● System call density
● System call latencies
● System call statistics
● System call latency vs time
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System call Latency view
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System call Latency view
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System call Latency view
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System call Latency view
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Disk IO view

Read & Write throughput
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Memory usage view

Tasks contribution to system memory usage
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Tracing in Virtualized 
Environments
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Tracing & Virtualization

Virtualization
● 1 Host
● 1 or more Virtual Machines

(Guests)

● Typically the interesting workload 
runs in the guest(s)

● KVM Model
● Guests have virtual CPUs (vcpus)
● Each vcpu is a process

● Tracing

● On the host:
● Events generated by what is running on 

the host
● Including the guests’ vcpus

● Inside the guests:
● Events generated by what runs in the 

guest
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Tracing On The Host

● We can see when the guests’ vcpus run
● We can see hypervisor related events (e.g., kvm/kvm_entry)
● We can’t see what triggered them, from inside the guests



43 Copyright © SUSE 2020

Tracing Inside The Guest

● We can see events generated by the workload running inside the guest
● We can’t see what hypervisor/host events they cause
● We can’t know now what happens when one of “our” vcpu is not running
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Combined Host + Guest(s) Tracing

Traces need to be collected in host and guests at the same time

Traces need to be synchronized

Tools need to support combined host CPUs and vCPUs views

● We know that both ftrace and LTTng can do something in that regard
● (with addons and/or using experimental versions)

● We will experiment with these features, in the remainder of the internship
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Tracing Overhead 
Analysis
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Is Tracing Causing Overhead?

Let’s run:
● hackbench
● stres-ng (CPU workload)

HW Platform:
● Intel core i7-10750H, 12 CPUs

(6 Cores, 2 Threads)

Let’s measure:
● With no tracing
● While tracing with LTTng
● While tracing with ftrace

Let’s compare!
● Different tracing options
● 200 runs (of each benchmark)
● Check if tracing makes things 

slower (in %)
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Hackbench

Hackbench slowdown (lower == better) when 
tracing different sets of events with ftrace or 
LTTng

● Overhead is visible even when only tracing 
scheduling events

● LTTng overhead seems lower (but ftrace is 
probably tracing more events)

ftrace LTTng

Tracing only 
sched. events

3.00% 2.59%

Tracing all 
events

173.84% 106.79%



48 Copyright © SUSE 2020

1 4 6 12 16 24

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

stress-ng cpu

ftrace

LTTng

Nr. Tasks
%

 o
ve

rh
e

a
d

Stress-ng CPU

Stress-ng CPU workload slowdown 
(lower == better) when tracing only 
scheduling events with ftrace or LTTng

● Overhead is really small
● Overhead is the same for the two

frameworks
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Stress-ng CPU workload slowdown 
(lower == better) when tracing all events 
with ftrace or LTTng

● Overhead varies with the number
of tasks used

● Overhead is the same for the two
frameworks

● Overhead is small, despite the high
number of events being traced
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Conclusions



51 Copyright © SUSE 2020

Conclusions

Kernel Tracing
● ftrace and LTTng are equally powerful and useful
● ftrace has the big advantage of being integrated in the kernel. Nothing is needed 

for starting using it!
User space & Combined Kernel and User space tracing
● LTTng can do it, ftrace can’t!
Graphical Tools
● KernelShark is very handy as a trace-cmd front end
● Trace Compass is kind of heavy (comes with Eclipse, etc) but much more 

powerful and flexible
Overhead
● Tracing overhead is both workload and load dependent
● Overhead introduced by ftrace and LTTng is pretty much the same
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