
A Comparison of ftrace and LTTng
for Tracing Baremetal and
Virtualized Workloads
Authors:
 Emilio Bruno
 Dario Faggioli
 Enrico Bini

January 08, 2020, TURIN

2 Copyright © SUSE 2020

Who we are

Emilio Bruno <emilio.bruno@edu.unito.it>
 Student @ University of Turin
 Internship @ SUSE

Dario Faggioli <dfaggioli@suse.com>
● Software Engineer, Virtualization Specialist @ SUSE

Enrico Bini <enrico.bini@unito.it>
● Professor @ University of Turin

mailto:emilio.bruno@edu.unito.it
mailto:dfaggioli@suse.com
mailto:enrico.bini@unito.it

3

Copyright © SUSE 2020

An Introduction
to Tracing

4 Copyright © SUSE 2020

What is Tracing?
Tracing allows to “record information about a program's execution
[…] used by programmers for debugging purposes, and additionally
[...] to diagnose common problems with software”

Tracing vs Logging:
● Tracing is usually much more detailed
● Tracing can be enabled and disabled at a fine-grained level
● Tracing can be very “noisy” and usually adds more overhead

What kind of software can be traced?
• System software (kernel/hypervisors)
• Applications (user level programs)

5 Copyright © SUSE 2020

Tracing with LTTng

Linux Trace Toolkit next generation (LTTng): “a powerful, open
Source set of tools to trace the Linux kernel and user applications
at the same time.”
https://lttng.org/

Distinctive features:
• (combined) Kernel and userspace tracing
• Trace files follows the Common Trace Format (CTF, https://diamon.org/ctf/)
• Low latency and low overhead tracing
• Traces can be analyzed offline or in real-time

https://lttng.org/

6 Copyright © SUSE 2020

Tracing with ftrace
Ftrace: “ftrace is a Linux kernel feature that lets you trace
Linux kernel function calls. Essentially, it lets you look into the
Linux kernel and see what it’s doing”
https://blogs.vmware.com/opensource/2019/11/12/ftrace-linux-kernel/

Distinctive features:
• Integrated in the Linux kernel
• Multiple and different tracers (function graph, stack, io, wakeup, …)
• More than 1000 events
• Specific tracers for latency analysis
• Shares infrastructure with other kernel performance tools (e.g., perf)
• Controlled from special filesystem (or specific tools)

https://blogs.vmware.com/opensource/2019/11/12/ftrace-linux-kernel/

7

Copyright © SUSE 2020

Comparing
LTTng and ftrace

8 Copyright © SUSE 2020

Installation
LTTng:
• Kernel infrastructure

• LTTng-modules
• Out-of-tree modules. Not integrated

inside Linux kernel! :-(
• Build from source or use distro

packages

• User space components
• e.g., lttng program
• Build from sources or use distro

packages

Ftrace:
● Kernel infrastructure

● Already integrated inside the
kernel

● Nothing to do! :-)

● User space components
● e.g., trace-cmd program
● Build from sources of use

distro packages

9 Copyright © SUSE 2020

(Simple) Usage Example

So, let’s:

perf bench sched pipe

And trace it’s execution with both the frameworks!

10 Copyright © SUSE 2020

Usage: Kernel Tracing
LTTng

lttng create session-name \
 --output=/your/path
lttng enable-event --kernel sched_'*'
lttng enable-event --kernel \
 --syscall read,write
lttng start
perf bench sched pipe
lttng destroy session-name

Ftrace

trace-cmd record -p nop -e sched \
 -e syscalls:sys_enter_write \
 -e syscalls:sys_enter_read \
 -e syscalls:sys_exit_write \
 -e syscalls:sys_exit_read -- \
 perf bench sched pipe

11 Copyright © SUSE 2020

Usage: Userspace
Tracing

12 Copyright © SUSE 2020

LTTng
liblttng-ust library:
● Provides tracef & tracelog APIs (similar to printf) or write your own “Tracepoint Provider” (

https://lttng.org/docs/#doc-c-application)
● … out of the scope of this work!

Prebuilt user space tracing helpers for:
● liblttng-ust-libc-wrapper.so, for tracing: malloc(), calloc(), realloc(), free(), ...
● liblttng-ust-pthread-wrapper.so, for tracing pthread_mutex_lock() (request and acquire

time), pthread_mutex_unlock(), pthread_mutex_trylock()
● liblttng-ust-cyg-profile.so, for tracing (potentially) every function

Used as pre-loadable shared objects:
● $ LD_PRELOAD=liblttng-ust-pthread-wrapper.so <your_command>

https://lttng.org/docs/#doc-c-application

13 Copyright © SUSE 2020

Ftrace

(Next to) Nothing to be done! :-(

Only option is trace_marker (https://lwn.net/Articles/366796/)

But it is very limited

14 Copyright © SUSE 2020

Usage example:
Userspace +
Kernel Tracing

15 Copyright © SUSE 2020

The code

16 Copyright © SUSE 2020

Trace Compass Resources view

17 Copyright © SUSE 2020

Trace Compass Resources view

18 Copyright © SUSE 2020

Traces Sizes

Traces size:
• LTTng: ~ 300 MB
• Ftrace: ~ 900 MB

19

Copyright © SUSE 2020

Textual Analysis of
the Traces

20 Copyright © SUSE 2020

Analyzing in a Terminal

LTTng

Babeltrace (version 2)
 APIs and command line tools
 Reference parser implementation for

CTF
 https://babeltrace.org/

Ftrace

 In theory, no tool required at all:
● All there already in the special

filesystem
 More convenient:

● trace-cmd
● https://man7.org/linux/man-pages/ma

n1/trace-cmd.1.html

https://babeltrace.org/
https://man7.org/linux/man-pages/man1/trace-cmd.1.html
https://man7.org/linux/man-pages/man1/trace-cmd.1.html

21 Copyright © SUSE 2020

A babeltrace2 Example

22 Copyright © SUSE 2020

A trace-cmd Example

23

Copyright © SUSE 2020

Graphical Analysis
of the Traces

24 Copyright © SUSE 2020

KernelShark (v1.2)

A graphical front end for
trace-cmd
 Per-CPU activity plot
 Per-task activity plot
 https://kernelshark.org/
Some remarks:
 Provided views are very

clear and useful
 It’s in active development
 Lags and delays, even

with not so big traces!

https://kernelshark.org/

25 Copyright © SUSE 2020

Trace Compass

Versatile traces and logs
analyzer
 Supports multiple tracing

formats:
 Both ftrace and LTTng!
 Provides multiple views
 https://www.eclipse.org/tr

acecompass/
Some remarks:
 Part of the Eclipse

Framework
 Versatile and powerful
 No lags, UX stays smooth

and fluid

https://www.eclipse.org/tracecompass/
https://www.eclipse.org/tracecompass/

26

Copyright © SUSE 2020

Trace Compass
Views

27 Copyright © SUSE 2020

Flow Control View

<<What does a task do?>>

<<What’s going on inside all
 the tasks at a given time?>>

Tasks are on “rows”

Colors correspond to different
states/actions

28 Copyright © SUSE 2020

Flow Control View

With an
ftrace
trace

With an
LTTng
trace

29 Copyright © SUSE 2020

Resources View

<<What is a CPU doing?>>

<<What is the state of all the CPUs at a
 given time?>>

Each CPU plot (on “rows”) has:
• A thread “row”: shows the task running there
• A states “row”: colors corresponds to different

states
• Dedicated “rows” for IRQ events

30 Copyright © SUSE 2020

Resources View

With an
ftrace
trace

With an
LTTng
trace

31 Copyright © SUSE 2020

Other views

32 Copyright © SUSE 2020

CPU usage view

How much CPU each task used
(with graphs)

33 Copyright © SUSE 2020

System call Latency view

Duration and latency of each syscall.

View divided in the following subviews:
● System call density
● System call latencies
● System call statistics
● System call latency vs time

34 Copyright © SUSE 2020

System call Latency view

35 Copyright © SUSE 2020

System call Latency view

36 Copyright © SUSE 2020

System call Latency view

37 Copyright © SUSE 2020

System call Latency view

38 Copyright © SUSE 2020

Disk IO view

Read & Write throughput

39 Copyright © SUSE 2020

Memory usage view

Tasks contribution to system memory usage

40

Copyright © SUSE 2020

Tracing in Virtualized
Environments

41 Copyright © SUSE 2020

Tracing & Virtualization

Virtualization
● 1 Host
● 1 or more Virtual Machines

(Guests)

● Typically the interesting workload
runs in the guest(s)

● KVM Model
● Guests have virtual CPUs (vcpus)
● Each vcpu is a process

● Tracing

● On the host:
● Events generated by what is running on

the host
● Including the guests’ vcpus

● Inside the guests:
● Events generated by what runs in the

guest

42 Copyright © SUSE 2020

Tracing On The Host

● We can see when the guests’ vcpus run
● We can see hypervisor related events (e.g., kvm/kvm_entry)
● We can’t see what triggered them, from inside the guests

43 Copyright © SUSE 2020

Tracing Inside The Guest

● We can see events generated by the workload running inside the guest
● We can’t see what hypervisor/host events they cause
● We can’t know now what happens when one of “our” vcpu is not running

44 Copyright © SUSE 2020

Combined Host + Guest(s) Tracing

Traces need to be collected in host and guests at the same time

Traces need to be synchronized

Tools need to support combined host CPUs and vCPUs views

● We know that both ftrace and LTTng can do something in that regard
● (with addons and/or using experimental versions)

● We will experiment with these features, in the remainder of the internship

45

Copyright © SUSE 2020

Tracing Overhead
Analysis

46 Copyright © SUSE 2020

Is Tracing Causing Overhead?

Let’s run:
● hackbench
● stres-ng (CPU workload)

HW Platform:
● Intel core i7-10750H, 12 CPUs

(6 Cores, 2 Threads)

Let’s measure:
● With no tracing
● While tracing with LTTng
● While tracing with ftrace

Let’s compare!
● Different tracing options
● 200 runs (of each benchmark)
● Check if tracing makes things

slower (in %)

47 Copyright © SUSE 2020

Hackbench

Hackbench slowdown (lower == better) when
tracing different sets of events with ftrace or
LTTng

● Overhead is visible even when only tracing
scheduling events

● LTTng overhead seems lower (but ftrace is
probably tracing more events)

ftrace LTTng

Tracing only
sched. events

3.00% 2.59%

Tracing all
events

173.84% 106.79%

48 Copyright © SUSE 2020

1 4 6 12 16 24

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

stress-ng cpu

ftrace

LTTng

Nr. Tasks
%

 o
ve

rh
e

a
d

Stress-ng CPU

Stress-ng CPU workload slowdown
(lower == better) when tracing only
scheduling events with ftrace or LTTng

● Overhead is really small
● Overhead is the same for the two

frameworks

49 Copyright © SUSE 2020

1 4 6 12 16 24

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

stress-ng cpu

ftrace

LTTng

Nr. Tasks
%

 o
ve

rh
e

a
d

Stress-ng CPU

Stress-ng CPU workload slowdown
(lower == better) when tracing all events
with ftrace or LTTng

● Overhead varies with the number
of tasks used

● Overhead is the same for the two
frameworks

● Overhead is small, despite the high
number of events being traced

50

Copyright © SUSE 2020

Conclusions

51 Copyright © SUSE 2020

Conclusions

Kernel Tracing
● ftrace and LTTng are equally powerful and useful
● ftrace has the big advantage of being integrated in the kernel. Nothing is needed

for starting using it!
User space & Combined Kernel and User space tracing
● LTTng can do it, ftrace can’t!
Graphical Tools
● KernelShark is very handy as a trace-cmd front end
● Trace Compass is kind of heavy (comes with Eclipse, etc) but much more

powerful and flexible
Overhead
● Tracing overhead is both workload and load dependent
● Overhead introduced by ftrace and LTTng is pretty much the same

 Thank you!

Questions?

© 2020 SUSE LLC. All Rights Reserved. SUSE and the
SUSE logo are registered trademarks of SUSE LLC in
the United States and other countries. All third-party
trademarks are the property of their respective owners.

For more information, contact SUSE at:
+1 800 796 3700 (U.S./Canada)
+49 (0)911-740 53-0 (Worldwide)

SUSE
Maxfeldstrasse 5
90409 Nuremberg
www.suse.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

