
1

buildtest: HPC Testing Framework for
Acceptance Testing

Shahzeb Siddiqui (Lawrence Berkeley National Laboratory)
Vanessa Sochat (Stanford University)

FOSDEM 2021
February 7th, 2021

2

What is buildtest

• Buildtest is a HPC Testing Framework for
acceptance and regression testing for HPC
system.

• Tests are written in YAML that is validated with
JSON schema.

• Buildtest automates test creation and execution
of test

• Target Audience: HPC Staff
• Buildtest is not

o Replacement for build tools like make, cmake, autoconf

o software build framework (easybuild, spack, nix, guix)

3

Terminology

Name Description
Buildspec Is a YAML file that buildtest interprets when building and running the test.

Global Schema Is a JSON schema that defines top-level structure for buildspec and validates the
buildspec file. All buildspecs are validated with global schema.

Sub Schema A test instance in buildspec file is validated with one sub-schema defined by type
field. Sub-schemas are versioned schema.

Executor Is responsible for running the test. Executors are defined in your buildtest
configuration.

4

Schemas
• The schema development is implemented independent to buildtest. The

schemas and docs are hosted at https://buildtesters.github.io/buildtest/
• We run regression test against example YAML files for each schema to ensure

schemas are written in accordance to desired YAML construct.

• We automate JSON Schema documentation using adobe/jsonschema2md into
Markdown pages and publish schema and documentation to GitHub pages

• Schemas are versioned to allow development to schemas and its YAML
structure.

https://buildtesters.github.io/buildtest/
https://github.com/adobe/jsonschema2md

5

Command Line Usage

Command Description

buildtest build –b <FILE> Build from a single file

buildtest build –b <DIR> Build all buildspecs in directory

buildtest build –b <FILE> -b <DIR> Build from a file and directory

buildtest build –-tags <TAGNAME> Build all buildspecs with tag <TAGNAME> from buildspec
cache

buildtest build –b <FILE> -b <DIR> --tags <TAGNAME> Build buildspec by file, directory and tag

buildtest build –b <dir> -x <file> –x <dir> Build buildspec by directory and exclude a file and directory

buildtest build –executor <EXECUTORNAME> Build all tests with executor <EXECUTORNAME> from
buildspec cache

6

Build by Buildspec

List of Discovered buildspecs

JSON Schema for
validating buildspec

Name of Test

Unique Test ID

State of test, can
be PASS or FAIL

Generated Test

7

Building By Tags

8

General Pipeline

• For every discovered buildspecs, buildtest will do the following:
o Parse: Validates buildspec with JSON Schema
o Build: Generates testscript from YAML
o Run: Executes tests via local or batch executor
o Gather Results: Write output/error file and get return code
o Update Report: Update report file with test results including any

metadata

9

Buildspec Validation Process

• Every buildspec is
validated by global
schema and a
subschema defined
by type field.

• Buildtest will skip
any buildspecs that
fails validation.

10

Name of Test

Schema Type
Description of Test

Name of Executor

Tag Name

Script

Declaration of tests
Schema Version

Buildspec Structure

11

Return Code Matching

• The returncode field can be used to customize how test is passed, by default a
returncode 0 is a PASS

• The returncode can be a a single number or a list of returncodes to match

12

Customize Shell

• The shell property can be used to
customize shell and shell options that
are passed to test.

• The default shell is /bin/bash

13

Python Shell

• The run property can be used for writing shell commands or it can be used for writing
python scripts.

• To enable python scripts use shell: python and one must use the python executor
• For more complex python scripts, it’s recommended one develops a python script and

invoke the python script using bash/sh shell.

Python Code

14

Scheduler Agnostic Configuration

• Buildtest provides a scheduler agnostic
configuration through batch field.

• The batch field implements a subset of
options supported by bsub, sbatch, and
qsub options that are shared between LSF,
Slurm and Cobalt.

15

Cray Burst Buffer and Data Warp Support
• Cray systems, we can access burst

buffers using BB and DW property.
• In this example we create a persistent

burst buffer named databuffer of size
10GB with striped access.

16

Compiler Selection and Compiler Defaults
• This test will be built using gcc@10.2.0 and gcc@9.3.0
• Compilers are defined in buildtest configuration, one can retrieve compilers

using buildtest config compilers

Source File

Compiler Schema

Start of Compiler Block
Select Compilers based on Regular Expression

Default Section for compilers organized by compiler groups
Default Section for gcc compilers

Set cflags
Set ldflags

17

Override Compiler Default

• Compiler defaults can be overridden via
config section. This is organized by named
compilers defined in buildtest setting.

• Buildtest will ignore compiler in config if it’s
not picked up in regular expression.

• In this example builtin_gcc will use default
cflags: -O1 while gcc@9.3.0 will use –O2
and gcc@10.2.0 will use –O3

18

Multi Compiler Test
• This OpenMP reduction example is built with all gcc,

intel and cray modules.
• OpenMP support for gcc, intel and cray differ slightly

this is defined in compiler group.
• The default all defines configuration inherited by all

compiler groups, in this case all tests sets environment
OMP_NUM_THREADS to 4.

• Properties in all can be overridden at compiler group or
named compiler.

19

MPI Example
• This is a MPI Laplace test that runs on KNL node.
• We use intel/19.1.2.254 compiler.
• The sbatch property defines #SBATCH directives.

This can be defined for at all compiler groups, compiler
group (intel) or part of compiler name intel/19.2.2.254.

• The module property can be used for loading or
swapping modules. This test loads impi/2020 module
which provides Intel MPI compiler.

• We can override C wrapper (cc) which can be used to
tweak compiler wrapper.

• The run property can be used to tweak how test is
executed, one can reference executable via $_EXEC
variable

20

Filter and Format buildspec cache

• We can filter and format
buildspec cache using –filter and
–format option.

• The filter option expects a list of
key=value pair separated by
comma.

• To see list of all filter and format
fields we can use –helpfilter and
–helpformat option

Multi key filter is
evaluated as logical
AND.

21

Query Test Reports with Filter and Format Examples

• We provide access to test reports through CLI. The
reports are stored in JSON file for post-processing.

• The buildtest report will display all test results which
can be queried with filter and format options.

• The –filter option are passed as key=value pair

• Multiple filter arguments can be delimited by
comma separator and buildtest will treat multiple
filter argument as a logical AND operation

• The –format option alter the columns in the report
tables.

22

Cori Test Suite

Category Description

System Filesystem, mountpoint check, timezone, ping gpfs nodes, /etc/profile.d/ scripts, os release, ulimits, time
test

Filesystem gpfs, lustre, cvmfs, filesystem benchmarks

Network Ping nodes (login, dtn, gerty), ssh test on login nodes, nslookup, ssh host authentication, nameservers

Tools iris, sqs, jobstats, myquota

Slurm sinfo, scontrol, sacctmgr, squeue, ping slurm controller, partitions, esslurm

Jobs Hostname to all QOS, submit to esslurm, timeout, exit1, OOM, create burstbuffer, stage-in to burst
buffer, fail jobs on time-limit/max nodes by queues

Apps OpenACC, OpenMP, MPI, bupc, upc, Spack, gpuquery, MKL, STREAM, Serial Hello, shifter pull image,
shifter job, E4S Testsuite, Lmodule

Cori Test Suite: https://github.com/buildtesters/buildtest-cori

https://github.com/buildtesters/buildtest-cori

23

SSH, Ping and Uptime Test

24

Resources
• Buildtest Docs: https://buildtest.readthedocs.io/en/latest/index.html
• Schema Docs: https://buildtesters.github.io/buildtest/
• Installing buildtest: https://buildtest.readthedocs.io/en/latest/installing_buildtest.html

• Getting Started: https://buildtest.readthedocs.io/en/latest/getting_started.html
• References: https://buildtest.readthedocs.io/en/latest/references.html

• Slack: http://hpcbuildtest.slack.com/ or Join: https://hpcbuildtest.herokuapp.com/
• API: https://buildtest.readthedocs.io/en/latest/api/index.html

https://buildtest.readthedocs.io/en/latest/index.html
https://buildtesters.github.io/buildtest/
https://buildtest.readthedocs.io/en/latest/installing_buildtest.html
https://buildtest.readthedocs.io/en/latest/getting_started.html
https://buildtest.readthedocs.io/en/latest/references.html
http://hpcbuildtest.slack.com/
https://hpcbuildtest.herokuapp.com/
https://buildtest.readthedocs.io/en/latest/api/index.html

