
Getting started with AMD GPUs
FOSDEM’21 HPC, Big Data and Data Science devroom
February 7th, 2021

George S. Markomanolis
Lead HPC Scientist, CSC – IT For Science Ltd.



Outline

• Motivation

• LUMI

• ROCm

• Introduction and porting codes to HIP

• Benchmarking

• Fortran and HIP

• Tuning 

2



Disclaimer

• AMD ecosystem is under heavy development, many things can change without notice 

• All the experiments took place on NVIDIA V100 GPU (Puhti cluster at CSC)

• Trying to use the latest versions of ROCm

• Some results are really fresh and investigating the outcome

3



LUMI

4



Motivation/Challenges

• LUMI will have AMD GPUs

• Need to learn how to program and port codes on AMD ecosystem

• Provide training to LUMI users

• Investigate in the future about possible problems

• Not yet access to AMD GPUs

5



AMD GPUs (MI100 example)

6
AMD MI100

LUMI will have a 
different GPU



Differences between HIP and CUDA

• AMD GCN hardware wavefronts size is 64 (like warp for CUDA)

• Some CUDA library functions do not have AMD equivalents 

• Shared memory and registers per thrad can differ between AMD and 
NVIDIA hardware

7



ROCm

8

• Open Software Platform for GPU-
accelerated Computing by AMD



ROCm installation
• Many components need to be installed

• Rocm-cmake

• ROCT Thunk Interface

• HSA Runtime API and runtime for ROCm

• ROCM LLVM / Clang

• Rocminfo (only for AMD HW)

• ROCm-Device-Libs

• ROCm-CompilerSupport

• ROCclr - Radeon Open Compute Common Language Runtime

• HIP

Instructions: https://github.com/cschpc/lumi/blob/main/rocm/rocm_install.md
Script: https://github.com/cschpc/lumi/blob/main/rocm/rocm_installation.sh
Repo: https://github.com/cschpc/lumi 9



Introduction to HIP

• HIP: Heterogeneous Interface for Portability is developed by 
AMD to program on AMD GPUs

• It is a C++ runtime API and it supports both AMD and NVIDIA 
platforms

• HIP is similar to CUDA and there is no performance overhead 
on NVIDIA GPUs

• Many well-known libraries have been ported on HIP

• New projects or porting from CUDA, could be developed 
directly in HIP

https://github.com/ROCm-Developer-Tools/HIP10



Differences between CUDA and HIP API 

#include “cuda.h”

cudaMalloc(&d_x, N*sizeof(double));

cudaMemcpy(d_x,x,N*sizeof(double),
cudaMemcpyHostToDevice);

cudaDeviceSynchronize();

11

#include “hip/hip_runtime.h”

hipMalloc(&d_x, N*sizeof(double));

hipMemcpy(d_x,x,N*sizeof(double),
hipMemcpyHostToDevice);

hipDeviceSynchronize();

CUDA HIP



Launching kernel with CUDA and HIP

kernel_name <<<gridsize, blocksize,                 
shared_mem_size,     
stream>>> 
(arg0, arg1, ...);

12

hipLaunchKernelGGL(kernel_name, 
gridsize,         
blocksize, 
shared_mem_size, 
stream,
arg0, arg1, ... );

CUDA HIP



HIP API
• Device Management:

o hipSetDevice(), hipGetDevice(), hipGetDeviceProperties(), hipDeviceSynchronize()

• Memory Management
o hipMalloc(), hipMemcpy(), hipMemcpyAsync(), hipFree(), hipHostMalloc

• Streams
o hipStreamCreate(), hipStreamSynchronize(), hipStreamDestroy()

• Events
o hipEventCreate(), hipEventRecord(), hipStreamWaitEvent(), hipEventElapsedTime()

• Device Kernels
o __global__, __device__, hipLaunchKernelGGL()

• Device code
o threadIdx, blockIdx, blockDim, __shared__
o Hundreds math functions covering entire CUDA math library

• Error handling
o hipGetLastError(), hipGetErrorString()

https://rocmdocs.amd.com/en/latest/ROCm_API_References/HIP-API.html
13



Hipify

• Hipify tools convert automatically CUDA codes

• It is possible that not all the code is converted, the remaining 
needs the implementation of the developer

• Hipify-perl: text-based search and replace

• Hipify-clang: source-to-source translator that uses clang 
compiler

• Porting guide: https://github.com/ROCm-Developer-
Tools/HIP/blob/main/docs/markdown/hip_porting_guide.md

14



Hipify-perl

• It can scan directories and converts CUDA codes with replacement of the cuda to hip 
(sed –e ’s/cuda/hip/g’)

$ hipify-perl --inplace filename

It modifies the filename input inplace, replacing input with hipified output, save backup 
in .prehip file.

$ hipconvertinplace-perl.sh directory

It converts all the related files that are located inside the directory

15



Hipify-perl (cont).

1) $ ls src/

Makefile.am  matMulAB.c  matMulAB.h matMul.c

2) $ hipconvertinplace-perl.sh src

3) $ ls src/

Makefile.am  matMulAB.c  matMulAB.c.prehip  matMulAB.h matMulAB.h.prehip  
matMul.c  matMul.c.prehip

No compilation took place, just convertion.

16



Hipify-perl (cont).

• The hipify-perl will return a report for each file, and it looks like this:

info: TOTAL-converted 53 CUDA->HIP refs ( error:0 init:0 version:0 device:1 ... library:16 
... numeric_literal:12 define:0 extern_shared:0 kernel_launch:0 ) 
warn:0 LOC:888
kernels (0 total) :
hipFree 18
HIPBLAS_STATUS_SUCCESS 6
hipSuccess 4
hipMalloc 3
HIPBLAS_OP_N 2
hipDeviceSynchronize 1
hip_runtime 1
17



Hipify-perl (cont).

#include <cuda_runtime.h>
#include "cublas_v2.h"

if (cudaSuccess != cudaMalloc((void **) &a_dev, 
sizeof(*a) * n * n) ||
cudaSuccess != cudaMalloc((void **) &b_dev, 
sizeof(*b) * n * n) ||
cudaSuccess != cudaMalloc((void **) &c_dev, 
sizeof(*c) * n * n)) {
printf("error: memory allocation (CUDA)\n");
cudaFree(a_dev); cudaFree(b_dev); 
cudaFree(c_dev);

cudaDestroy(handle);
exit(EXIT_FAILURE);

}
18

#include <hip/hip_runtime.h>
#include "hipblas.h”

if (hipSuccess != hipMalloc((void **) &a_dev, 
sizeof(*a) * n * n) ||

hipSuccess != hipMalloc((void **) &b_dev, 
sizeof(*b) * n * n) ||

hipSuccess != hipMalloc((void **) &c_dev, 
sizeof(*c) * n * n)) {

printf("error: memory allocation (CUDA)\n");

hipFree(a_dev); hipFree(b_dev); hipFree(c_dev);
hipblasDestroy(handle);
exit(EXIT_FAILURE);

}

CUDA HIP



Compilation

1) Compilation with CC=hipcc

matMulAB.c:21:10: fatal error: hipblas.h: No such file or directory 21 | #include 
"hipblas.h" 

2) Install HipBLAS library *

3) Compile again and the binary is ready. When the HIP is on NVIDIA hardware, the .cpp 
file should be compiled with the option “hipcc -x cu …”.

• The hipcc is using nvcc on NVIDIA GPUs and hcc for AMD GPUs

* https://github.com/cschpc/lumi/blob/main/hip/hipblas.md

19



Hipify-clang

• Build from source

• Some times needs to include manually the headers -I/...

$ hipify-clang --print-stats -o matMul.o matMul.c

[HIPIFY] info: file 'matMul.c' statistics:
CONVERTED refs count: 0
UNCONVERTED refs count: 0
CONVERSION %: 0
REPLACED bytes: 0
TOTAL bytes: 4662
CHANGED lines of code: 1
TOTAL lines of code: 155
CODE CHANGED (in bytes) %: 0
CODE CHANGED (in lines) %: 1
TIME ELAPSED s: 22.9420



Benchmark MatMul OpenMP oflload

• Use the benchmark https://github.com/pc2/OMP-Offloading for testing purposes, 
matrix multiplication of 2048 x 2048

• All the CUDA calls were converted and it was linked with hipBlas among also 
OpenMP offload

• CUDA

matMulAB (11) :    1001.2 GFLOPS   11990.1 GFLOPS maxabserr =       0.0

• HIP

matMulAB (11) :     978.8 GFLOPS   12302.4 GFLOPS maxabserr =       0.0

• For the most executions, HIP version was equal or a bit better than CUDA version, for total 
execution, there is ~2.23% overhead for HIP using NVIDIA GPUs21



N-BODY SIMULATION

• N-Body Simulation (https://github.com/themathgeek13/N-Body-Simulations-CUDA) 
AllPairs_N2

• 171 CUDA calls converted to HIP without issues, close to 1000 lines of code

• HIP calls: hipMemcpy, hipMalloc, hipMemcpyHostToDevice, 
hipMemcpyDeviceToHost, hipLaunchKernelGGL, hipDeviceSynchronize, hip_runtime, 
hipSuccess, hipGetErrorString, hipGetLastError, hipError_t, HIP_DYNAMIC_SHARED 

• 32768 number of small particles, 2000 time steps

• CUDA execution time: 68.5 seconds

• HIP execution time: 70.1 seconds, ~2.33% overhead
22



Fortran

• First Scenario: Fortran + CUDA C/C++
oAssuming there is no CUDA code in the Fortran files.
oHipify CUDA
oCompile and link with hipcc

• Second Scenario: CUDA Fortran
oThere is no HIP equivalent
oHIP functions are callable from C, using `extern C`
oSee hipfort

23



Hipfort

• The approach to port Fortran codes on AMD GPUs is different, the hipify tool does 
not support it.

• We need to use hipfort, a Fortran interface library for GPU kernel *

• Steps: 
1) We write the kernels in a new C++ file

2) Wrap the kernel launch in a C function

3) Use Fortran 2003 C binding to call the function

4) Things could change in the future

• Use OpenMP offload to GPUs

* https://github.com/ROCmSoftwarePlatform/hipfort

24



Fortran CUDA example

• Saxpy example

• Fortran CUDA, 29 lines of code

• Ported to HIP manually, two files of 52 lines, with more than 20 new lines.

• Quite a lot of changes for such a small code.

• Should we try to use OpenMP offload before we try to HIP the code?

• Need to adjust Makefile to compile the multiple files

• The HIP version is up to 30% faster, seems to be a comparison between nvcc and 
pgf90, still checking to verify some results

• Example of Fortran with HIP: https://github.com/cschpc/lumi/tree/main/hipfort
25



Fortran CUDA example (cont.)

26

Original Fortran CUDA New Fortran 2003 with HIP C++ with HIP and extern C



AMD OpenMP (AOMP)

• We have tested the LLVM provided OpenMP offload and gets 
improved by the time

• AOMP is under heavy development and we started testing it.

• AOMP has still some performance issues according to some 
public results but we expect to be also improved significanlty 
by the time LUMI is delivered

• https://github.com/ROCm-Developer-Tools/aomp

27



OpenMP or HIP?

• Some users will be questioning about the approach

• OpenMP can provide a quick porting but it is expected with HIP 
to have better performance as we avoid some layers like that. 

• For complicated codes and programming languages as Fortran, 
probably OpenMP could provide a benefit. Always profile your 
code to investigate the performance.

28



Porting code to LUMI (not official)

29



Profiling/Debugging

• AMD will provide APIs for profiling and debugging

• Cray will support the profiling API through CrayPat

• Some well known tools are collaborating with AMD and preparing their tools for 
profiling and debugging 

• Some simple environment variables such as 
AMD_LOG_LEVEL=4 will provide some information. 

• More information about a hipMemcpy error:

hipError_t err = hipMemcpy(c,c_d,nBytes,hipMemcpyDeviceToHost);
printf("%s ",hipGetErrorString(err));
30



Tuning

• Multiple wavefronts per compute unit (CU) is important to hide 
latency and instruction throughput

• Memory coalescing increases bandwidth 

• Unrolling loops allow compiler to prefetch data

• Small kernels can cause latency overhead, adjust the workload

• Use of Local Data Share (LDS)

31



Programming models

• OpenACC will be available through the GCC as Mentor 
Graphics (now called Siemens EDA) is developing the 
OpenACC integration

• Kokkos, Raja, Alpaka, and SYCL should be able to be used on 
LUMI but they do not support all the programming languages

32



Conclusion 

• Depending on the code the porting to HIP can be more straight forward

• There can be challenges, depending on the code and what GPU 
functionalities are integrated to an application

• There are many approaches to port a code and you should select the one 
that you are more familiar and provides as possible as good performance

• It will be required to tune the code for high occupancy

• Profiling can help to investigate data transfer issues

• Probably is more productive to try OpenMP with offload to GPUs 
initially with Fortran codes

33



facebook.com/CSCfi

twitter.com/CSCfi

youtube.com/CSCfi

linkedin.com/company/csc---it-center-for-science

Kuvat CSC:n arkisto, Adobe Stock ja Thinkstock

github.com/CSCfi

Thank you!
georgios.markomanolis@csc.fi


