CscC

ICT Solutions for
Brilliant Minds

Getting started with AMD GPUs
FOSDEM’21 HPC, Big Data and Data Science devroom
February 7t, 2021

George S. Markomanolis
Lead HPC Scientist, CSC — IT For Science Ltd.

Outline

* Motivation

 LUMI

* ROCm

* Introduction and porting codes to HIP
* Benchmarking

* Fortran and HIP

* Tuning

csc

Disclaimer

* AMD ecosystem is under heavy development, many things can change without notice
* All the experiments took place on NVIDIA V100 GPU (Puhti cluster at CSC)
* Trying to use the latest versions of ROCm

» Some results are really fresh and investigating the outcome

LUMI

LUMI
LUMI, the Queen of the North

LUMI is aTier-o GPU-accelerated) .
supercomputer that enables the LWUMIG: _— | Tiar-s.GPU partitionsover
convergence of high- 5 SPU LUMI-D: 559 Pﬂop{'s powered by
performance computing, LUMI-C: artition <Ay AMD Instinct GPUs
artificial intelligence, and high- pafs:on Analytics
performance data analytics. Partition Interactive partition with 32
« Supplementary CPU » TB of memory and graphics

partition CLoL:tI:AaIi:ér High-speéd A chLé:\::-ai:ed G.PUs_for Fiata analytics and
* ~200,000 AMD EPYC Cloud interconnect Storage visualization

CPU cores ke

7 PB Flash-based storage

Possibility for combining LUMI-Q LUMI-P: layer with extreme I/O
different resources within a Emerging Lustre bandwidth of 2 TB/s and
single run. HPE Slingshot tech Lg't:’,'"a Storage IOPS capability. Cray
technology. Sto::;te ClusterStor E1000. A
30 PB encrypted object Se{vice [’/ S\
storage (Ceph) for storing, 80 PB parallel file system |)
Shal'iﬂg and Staging data www.lumi-supercomputer.ev #lumisupercomputer #lumieurohpc ~ i

Motivation/Challenges

* LUMI will have AMD GPUs
* Need to learn how to program and port codes on AMD ecosystem
* Provide training to LUMI users

* Investigate in the future about possible problems

* Not yet access to AMD GPUs

AMD GPUs (MI100 example)

PCiGen4 M ultimedia Engine

Shader Engine Shader Engine Shader Engine Shader Engine
cu cu cuU cu
k) z
3 3
g 5
o
o 0
> cu cu cu cu]
o g
£ S
ACE |ACE HW5|
— L2 L2 —
ACE |ACE DMA|
cu cu cu
E cu %
g | WD || T || T || OEITE ||
s <
S e
2 E]
2 =1
E S
S g
cu cu cuU cu
Shader Engine Shader Engine Shader Engine Shader Engine
| | XGMI Links |

INFINITY FABRIC

LUMI will have a
different GPU

/| A

))

AMD M00/

Differences between HIP and CUDA

* AMD GCN hardware wavefronts size 1s 64 (like warp for CUDA)
* Some CUDA library functions do not have AMD equivalents

« Shared memory and registers per thrad can differ between AMD and
NVIDIA hardware

Radeon GPUs:
Radeon Vil
RX Vega 56 & RX Vega 64

R 480 & R9 580
m RO Nano and R9 Fury X
Radeon Instrict GPUS:

* Open Software Platform for GPU- Mic

Mi25
MI50 & MIBO

accelerated Computing by AMD Miz00

ROCm GPU driver
HSA Runtime

2 . Supported in Ubuntu, Red Hat Enterprise, CentOS
Low-level device manipulation

Thunk Driver Interface
Interoperability of layers below

roc*, hip*:
HIP
rocBLAS, hipBLAS

rocSPARSE, hipSPARSE OpenCL

rocFFT, hipFFT

rocRAND Tensorflow
RCCL PyTorch
hipfort

MIOpen

roc-prof, roc-tracer
rocm-smi

ROCr Debug Agent

ROCm installation

* Many components need to be installed

* Rocm-cmake

* ROCT Thunk Interface

* HSA Runtime API and runtime for ROCm
« ROCM LLVM / Clang

* Rocminfo (only for AMD HW)

* ROCm-Device-Libs

* ROCm-CompilerSupport

* ROCclr - Radeon Open Compute Common Language Runtime

* HIP
Instructions: https://github.com/cschpc/lumi/blob/main/rocm/rocm_install.md [| 9)\\'f{) u
Script: https://github.com/cschpe/lumi/blob/main/rocm/rocm_installation.sh NI/

9 Reﬁo: httﬁs://%ithub.com/cschﬁc/lumi

Introduction to HIP

« HIP: Heterogeneous Interface for Portability is developed by
AMD to program on AMD GPUs

* [t 1s a C++ runtime API and it supports both AMD and NVIDIA
platforms

« HIP is similar to CUDA and there is no performance overhead
on NVIDIA GPUs

* Many well-known libraries have been ported on HIP

* New projects or porting from CUDA, could be developed
directly in HIP B

AN

P N W
)))

~| ¢/
N Y,

0 httRs:// ﬁithub.com/ROCm-DeveloBer-T ools/HIP

Differences between CUDA and HIP API

CUDA HIP

#include “cuda.h” #include “hip/hip runtime.h”

cudaMalloc(&d_x, N*sizeof(double)); hipMalloc(&d x, N*sizeof(double));

cudaMemcpy(d x,x,N*sizeof(double),

, hipMemcpy(d_x,x,N*sizeof(double),
cudaMemcpyHostToDevice);

hipMemcpyHostToDevice);

cudaDeviceSynchronize(); hipDeviceSynchronize(); A

Launching kernel with CUDA and HIP

CUDA HIP

kernel name <<<gridsize, blocksize, hipLaunchKernelGGL(kernel name,
shared mem_ size, gridsize,
stream>>> blocksize,
(arg0, argl, ...); shared mem_size,

stream,
arg0, argl, ...);

V4 N,
‘\m\ﬁ\.

a W\ W
YRIBI
<)|
/,” //

AN 2/
N 7¢

HIP API

* Device Management:
o hipSetDevice(), hipGetDevice(), hipGetDeviceProperties(), hipDeviceSynchronize()

* Memory Management
o hipMalloc(), hipMemcpy(), hipMemcpyAsync(), hipFree(), hipHostMalloc

* Streams
o hipStreamCreate(), hipStreamSynchronize(), hipStreamDestroy()

Events
o hipEventCreate(), hipEventRecord(), hipStreamWaitEvent(), hipEventElapsedTime()

* Device Kernels
o global , device ,hipLaunchKernelGGL()

* Device code
o threadldx, blockldx, blockDim, _ shared
o Hundreds math functions covering entire CUDA math library

* Error handling
o hipGetLastError(), hipGetErrorString() A&
)
https://rocmdocs.amd.com/en/latest/ROCm_API References/HIP-API.html AN f:’?;i?“'

13

Hipify

* Hipify tools convert automatically CUDA codes

* [t 1s possible that not all the code 1s converted, the remaining
needs the implementation of the developer

* Hipify-perl: text-based search and replace

* Hipify-clang: source-to-source translator that uses clang
compiler

* Porting guide: https://github.com/ROCm-Developer-
Tools/HIP/blob/main/docs/markdown/hip_porting_guide.md

.. T
Hipify-perl

* [t can scan directories and converts CUDA codes with replacement of the cuda to hip
(sed —e ’s/cuda/hip/g’)

$ hipify-perl --inplace filename

It modifies the filename input inplace, replacing input with hipified output, save backup
in .prehip file.

$ hipconvertinplace-perl.sh directory

It converts all the related files that are located inside the directory

Hipify-perl (cont).

1) $ Is src/

Makefile.am matMulAB.c matMulAB.h matMul.c
2) $ hipconvertinplace-perl.sh src
3) $ Is src/

Makefile.am matMulAB.c matMulAB.c.prehip matMulAB.h matMulAB.h.prehip
matMul.c matMul.c.prehip

No compilation took place, just convertion.

Hipify-perl (cont).

* The hipify-perl will return a report for each file, and it looks like this:

info: TOTAL-converted 53 CUDA->HIP refs (error:0 init:0 version:0 device:1 ... library:16

... numeric_literal:12 define:0 extern shared:0 kernel launch:0)

warn:0 LOC:888

kernels (0 total) :

hipFree 18

HIPBLAS STATUS SUCCESS 6

hipSuccess 4

hipMalloc 3

HIPBLAS OP N2

hipDeviceSynchronize 1 [/ 5)
hip_runtime 1 7))

/ A
QW

17

Hipify-perl (cont).

CUDA HIP

#include <cuda_runtime.h> #include <hip/hip runtime.h>

#include "cublas_v2.h" #include "hipblas.h”

if (cudaSuccess != cudaMalloc((void **) &a_dev, if (hipSuccess != hipMalloc((void **) &a_dev,
sizeof(*a) * n * n) || sizeof(*a) * n * n) ||

cudaSuccess = cudaMalloc((void **) &b _dev, ~ hipSuccess != hipMalloc((void **) &b_dev,
sizeof(*b) * n * n) || sizeof(*b) * n * n) ||

hipSuccess != hipMalloc((void **) &c dev,
sizeof(*c) * n * n)) {
printf("error: memory allocation (CUDA)\n");

cudaSuccess != cudaMalloc((void **) &c_dev,
sizeof(*c) * n * n)) {

printf("error: memory allocation (CUDA)\n");

cudaFree(a_dev); cudaFree(b_dev); hipFree(a_dev); hipFree(b_dev); hipFree(c_dev);
cudaFree(c_dev); hipblasDestroy(handle);
cudaDestroy(handle); exit(EXIT_FAILURE); AN
exit(EXIT FAILURE); b [‘\)
} N 7

18

Compilation

1) Compilation with CC=hipcc

matMulAB.c:21:10: fatal error: hipblas.h: No such file or directory 21 | #include
"hipblas.h"

2) Install HipBLAS library *

3) Compile again and the binary is ready. When the HIP is on NVIDIA hardware, the .cpp
file should be compiled with the option “hipcc -x cu ...”.

* The hipcc is using nvec on NVIDIA GPUs and hee for AMD GPUs
* https://github.com/cschpc/lumi/blob/main/hip/hipblas.md A N\

Hipify-clang
* Build from source
* Some times needs to include manually the headers -I/...

$ hipify-clang --print-stats -o matMul.o matMul.c

[HIPIFY] info: file 'matMul.c' statistics:
CONVERTED refs count: 0
UNCONVERTED refs count: 0
CONVERSION %: 0
REPLACED bytes: 0
TOTAL bytes: 4662
CHANGED lines of code: 1
TOTAL lines of code: 155 ZERN
CODE CHANGED (in bytes) %: 0 q ﬂ \
CODE CHANGED (in lines) %: 1)

2TIME ELAPSED s: 22.94

Benchmark MatMul OpenMP oflload

 Use the benchmark https://github.com/pc2/OMP-Offloading for testing purposes,
matrix multiplication of 2048 x 2048

 All the CUDA calls were converted and it was linked with hipBlas among also
OpenMP offload

- CUDA
matMulAB (11) : 1001.2 GFLOPS 11990.1 GFLOPS maxabserr = 0.0

e HIP

matMulAB (11) : 978.8 GFLOPS 12302.4 GFLOPS maxabserr = 0.0 RN
C 2))

* For the most executions, HIP version was equal or a bit better than CUDA version, for total

= execution, there 1s ~2.23% overhead for HIP using NVIDIA GPUs
I

+
N-BODY SIMULATION

* N-Body Simulation (https://github.com/themathgeek 13/N-Body-Simulations-CUDA)
AllPairs N2

* 171 CUDA calls converted to HIP without issues, close to 1000 lines of code

 HIP calls: hipMemcpy, hipMalloc, hipMemcpyHostToDevice,
hipMemcpyDeviceToHost, hipLaunchKernelGGL, hipDeviceSynchronize, hip runtime,
hipSuccess, hipGetErrorString, hipGetLastError, hipError t, HIP. DYNAMIC SHARED

32768 number of small particles, 2000 time steps
* CUDA execution time: 68.5 seconds PN

* HIP execution time: 70.1 seconds, ~2.33% overhead N %))

Fortran

* First Scenario: Fortran + CUDA C/C++
oAssuming there is no CUDA code in the Fortran files.
oHipify CUDA
o Compile and link with hipcc

* Second Scenario: CUDA Fortran
oThere is no HIP equivalent
oHIP functions are callable from C, using “extern C’
oSee hipfort

1 N
[|D))
7)

N ‘Y

23

Hipfort

* The approach to port Fortran codes on AMD GPUs is different, the hipify tool does
not support it.

* We need to use hipfort, a Fortran interface library for GPU kernel *

* Steps:
1) We write the kernels in a new C++ file
2) Wrap the kernel launch in a C function
3) Use Fortran 2003 C binding to call the function
4) Things could change in the future

e Use OpenMP offload to GPUs
* https://github.com/ROCmSoftwarePlatform/hipfort B l\,

/i
N Y

24

Fortran CUDA example

e Saxpy example

* Fortran CUDA, 29 lines of code

* Ported to HIP manually, two files of 52 lines, with more than 20 new lines.
* Quite a lot of changes for such a small code.

 Should we try to use OpenMP offload before we try to HIP the code?

* Need to adjust Makefile to compile the multiple files

* The HIP version is up to 30% faster, seems to be a comparison between nvcc and
pgf0, still checking to verify some results P

* Example of Fortran with HIP: https://github.com/cschpc/lumi/tree/main/hipfort [\\ %))

AN
|
e,

25

Fortran CUDA example (cont.)
Original Fortran CUDA New Fortran 2003 with HIP C++ with HIP and extern C

AMD OpenMP (AOMP)

* We have tested the LLVM provided OpenMP offload and gets
improved by the time

 AOMP is under heavy development and we started testing it.

* AOMP has still some performance issues according to some

public results but we expect to be also improved significanlty
by the time LUMI is delivered

* https://github.com/ROCm-Developer-Tools/aomp

OpenMP or HIP?

» Some users will be questioning about the approach

* OpenMP can provide a quick porting but it i1s expected with HIP
to have better performance as we avoid some layers like that.

* For complicated codes and programming languages as Fortran,
probably OpenMP could provide a benefit. Always profile your
code to investigate the performance.

Porting code to LUMI (not official)

| Porting codes te LUMI |

Do you want to try
new libraries and
re-write parts of the code?

Parallel code with GPU

Parallel code w/out GPU
De you want to try
new libraries?
Alpaka, SYCL

Kokkos, Raja
Alpaka, SYCL {not all programming
Kokkos, Raja languages supported)
(not all programming
languages supported)

‘ Is it C/C++ code? ‘ Is it Fortran code? ‘

Use hipfort and
Use hipify tocls ::zeht‘be e
Use Reveal tool of port through

profiling and Identify important
loops to OpenMP

Advanced programmer with
knowledge on GPUS and
enough available resources

nd time

Profile and port the OpenACC calls to|
‘OpenMP with offload to GPU

Profile, tune OpenMP calls
and data transfers

Fix code, if any, that was not
canverted to HIP (for C/C++).
Profile and tune, use hip libraries
‘where possible

Is the code In C/C++7

Is the code in Fortran?

Profile, [dentify kernels,

ipfort, prepare the kernels
Profile, identify karnals, el
port them in HIP and tune according to the instructions for
Fortran, port kernels to HIP

and tune

29

Profiling/Debugging

* AMD will provide APIs for profiling and debugging
* Cray will support the profiling API through CrayPat

* Some well known tools are collaborating with AMD and preparing their tools for
profiling and debugging

* Some simple environment variables such as
AMD LOG LEVEL=4 will provide some information.

* More information about a hipMemcpy error:

hipError_t err = hipMemcpy(c,c_d,nBytes,hipMemcpyDeviceToHost); A S
printf("%s ",hipGetErrorString(err)); [\&

30

Tuning

* Multiple wavefronts per compute unit (CU) is important to hide
latency and instruction throughput

* Memory coalescing increases bandwidth
 Unrolling loops allow compiler to prefetch data
* Small kernels can cause latency overhead, adjust the workload

 Use of Local Data Share (LDS)

Programming models

* OpenACC will be available through the GCC as Mentor
Graphics (now called Siemens EDA) is developing the
OpenACC integration

» Kokkos, Raja, Alpaka, and SYCL should be able to be used on
LUMI but they do not support all the programming languages

Conclusion

* Depending on the code the porting to HIP can be more straight forward

* There can be challenges, depending on the code and what GPU
functionalities are integrated to an application

* There are many approaches to port a code and you should select the one
that you are more familiar and provides as possible as good performance

* It will be required to tune the code for high occupancy
* Profiling can help to investigate data transfer issues

 Probably is more productive to try OpenMP with offload to GPUs A S
initially with Fortran codes |4

33

CScC

facebook.com/CSCfi

Thank you!

eorgios.markomanolis@csc.fi
9 9 @ twitter.com/CSCfi

youtube.com/CSCfi

linkedin.com/company/csc-—it-center-for-science

github.com/CSCfi [/ "}‘.\\\“\\\h H
S <)] ."‘.‘If

OHOON

Kuvat CSC:n arkisto, Adobe Stock ja Thinkstock

