
Dmitry Chuyko

2021

Alpine Musl Containers
Now Upstream

Liberica www.bell-sw.com
supported OpenJDK binaries

Dmitry
Chuyko

ex-employers:

@dchuyko

http://bell-sw.com

JDK 11

...package an
application with all of
its dependencies into
a standardized unit for
software development.

— Docker

App

Framework

App Libraries

OS Packages

JRE

OS

Scratch

Base

A base image has FROM scratch
in its Dockerfile.

A parent image is the one that your image is
based on. It refers to the contents of the FROM
directive in the Dockerfile. Each subsequent
declaration in the Dockerfile modifies this parent
image. Most Dockerfiles start from a parent
image rather than a base image. However, the
terms are sometimes used interchangeably.

⦁ Based on OS images
⦁ JDK package installation

─ Package manager
─ Package
─ Same vendor

⦁ JDK binary installation
─ Requirements
─ Compatibility

⦁ Ask your provider about testing

$ time docker pull openjdk
...
real 0m27.990s
user 0m0.095s
sys 0m0.096s

$ docker history openjdk
IMAGE CREATED CREATED BY SIZE
95b80f783bd2 12 days ago /bin/sh -c #(nop) CMD ["jshell"] 0B
<missing> 12 days ago /bin/sh -c set -eux; objdump="$(command -v… 336MB
<missing> 12 days ago /bin/sh -c #(nop) ENV JAVA_VERSION=15.0.1 0B
<missing> 12 days ago /bin/sh -c #(nop) ENV PATH=/usr/java/openjd… 0B
<missing> 12 days ago /bin/sh -c #(nop) ENV JAVA_HOME=/usr/java/o… 0B
<missing> 12 days ago /bin/sh -c #(nop) ENV LANG=C.UTF-8 0B
<missing> 12 days ago /bin/sh -c set -eux; microdnf install gzi… 40.1MB
<missing> 12 days ago /bin/sh -c #(nop) CMD ["/bin/bash"] 0B
<missing> 12 days ago /bin/sh -c #(nop) ADD file:ca74b6a4572ba9ecd… 148MB
<missing> 8 weeks ago /bin/sh -c #(nop) LABEL org.opencontainers.… 0B

$ docker images | head -n 1; docker images | grep openjdk
REPOSITORY TAG IMAGE ID CREATED SIZE
openjdk latest 95b80f783bd2 12 days ago 524MB

Images are transferred over the
network across domains, so less
traffic is cheaper. At the same time,
every deployment will go faster.

The paid registry needs to contain
less volume of data, and less
data is transferred out.

OS Layer Wire Disk libc pkg man shell

Ubuntu 27 MB 73 MB glibc apt bash

Debian 48 MB 114 MB glibc apt bash

Debian Slim 26 MB 69 MB glibc apt bash

CenOS 71 MB 215 MB glibc yum bash

RHEL Atomic Base 31 MB 78 MB glibc microdnf bash

GCR Distroless base 7.6 MB 17 MB glibc — —

Alpine 2.7 MB 5.6 MB musl apk ash

GCR Distroless static 0.6 MB 1.8 MB — — —

... is a security-oriented,
lightweight Linux
distribution based on
musl libc and busybox.

— Alpine

⦁ alpinelinux.org
⦁ Small

─ Built around musl libc and busybox
─ Small packages

⦁ Simple
─ OpenRC init system
─ apk package manager

⦁ Secure
─ Position Independent Executables (PIE) binaries

with stack smashing protection

https://alpinelinux.org/

⦁ musl.libc.org
⦁ Built on top of Linux syscall API (C bindings for the OS interfaces)
⦁ Base language standard (ISO C)
⦁ POSIX + widely-agreed extensions
⦁ Lightweight (size), fast, simple, free (MIT)
⦁ Strives to be correct in the sense of standards-conformance and safety

http://musl.libc.org/

⦁ musl.libc.org/about.html
⦁ Simplicity

─ Decoupling, minimize abstractions
─ Favors simple algorithms over more complex ones
─ Readable code

⦁ Resource efficiency
─ Minimal size, low overhead, efficient static linking (Nx10kb)
─ Scalable (small stacks)

⦁ Attention to correctness
─ Defensive coding, no race conditions

⦁ Ease of deployment (single binary)
⦁ First-class support for UTF-8/multilingual text

http://musl.libc.org/about.html

⦁ etalabs.net/compare_libcs.html
⦁ Note: outdated

http://www.etalabs.net/compare_libcs.html

⦁ busybox.net
⦁ Many Unix utilities in a single executable file

─ i.e. shell commands and the shell itself

⦁ Glibc, musl (Alpine), uLibc
⦁ GPLv2
⦁ hub.docker.com/_/busybox

https://www.busybox.net/
https://hub.docker.com/_/busybox

⦁ Swiss army knife, small
⦁ Implementation of the standard Linux command line tools
⦁ Smallest executable size
⦁ Simplest and cleanest implementation
⦁ Standards compliant
⦁ Minimal run-time memory usage (heap and stack)
⦁ Fast

It is small. All necessary tools are
available out of the box
or in packages.

What about JDK layer?

Port the JDK to Alpine
Linux, and to other Linux
distributions that use musl
as their primary C library,
on both the x64 and
AArch64 architectures.

— JEP 386

⦁ JEP 386: Alpine Linux Port
⦁ openjdk.java.net/jeps/386

http://openjdk.java.net/jeps/386

⦁ openjdk.java.net/projects/portola
⦁ Port of the JDK to the Alpine Linux distribution,

and in particular the musl C library
⦁ Started by Mikael Vidstedt from Oracle in 2017
⦁ Used for Alpine musl containers with JDK 9+
⦁ Integrated into mainline in 2020 with JEP 386

─ Delivered by BellSoft
─ JDK 16

https://openjdk.java.net/projects/portola/

⦁ A new port
─ Determine and distinguish C libraries
─ Conditional compilation

⦁ Native build
⦁ Cross-toolchain for glibc environment
⦁ Implement missing functions or make them compatible
⦁ Testing environment
⦁ Documentation

─ https://github.com/openjdk/jdk/blob/master/doc/building.md#building-for-musl

https://github.com/openjdk/jdk/blob/master/doc/building.md#building-for-musl

$ x86_64-linux-musl-cross/bin/x86_64-linux-musl-gcc -std=c99 -I"$JAVA_HOME/include"
-I"$JAVA_HOME/include/linux" -shared -o libhelloworld.so -fPIC JNIHelloWorld.c

7.7K libhelloworld.so

$ java -Djava.library.path=. JNIHelloWorld

Exception in thread "main" java.lang.UnsatisfiedLinkError: /home/tp/jni/libhelloworld.so:
/usr/lib/x86_64-linux-gnu/libc.so: invalid ELF header

$ docker run -it -v ~/jni:/jni bellsoft/liberica-openjdk-alpine:15 java
-Djava.library.path=/jni -cp /jni JNIHelloWorld

Hello world!

$ docker run -it -v ~/jni:/jni bellsoft/liberica-openjdk-alpine-musl:15 java
-Djava.library.path=/jni -cp /jni JNIHelloWorld

Hello world!

⦁ LD_PRELOAD is not the same on different platforms
─ Glibc resolves libs not like musl (or AIX libc)
─ jpackage and other launchers were fixed to still use proper JDK libs

⦁ Alpine used to have PaX/grsecurity in kernel by default
─ Attempt to execute JIT code shut down the JVM
─ Added Memory protection check on startup

⦁ JDWP (Debug) sometimes had troubles with IPv4/IPv6 config
─ Initialization was made more careful

⦁ Debugging (gdb)
─ There’s SIGSYNCCALL during JVM init
─ Debug with -XX:-MaxFDLimit

⦁ Running AWT in headless mode
─ You may want to render images
─ Install freetype and fonts

⦁ Fontmanager
─ For all real cases load awt lib before fontmanager

⦁ NMT
─ Use latest Alpine (3.11+)

⦁ NUMA detection requires recent libnuma
─ apk add numactl

⦁ lsof does not support ‘-p’ option on busybox
─ Expect reduced output

⦁ Musl does not execute scripts that does
not have a proper shebang
─ Write proper # headers in *.sh
─ https://www.openwall.com/lists/musl/2020/02/13/4

⦁ Serviceability agent (private API) doesn’t work

$ docker run -it bellsoft/liberica-openjdk-alpine-musl:15 ash

-rwxr-xr-x run.sh

echo "hello"

jshell> Runtime.getRuntime().exec("./run.sh")
| Exception java.io.IOException: Cannot run program "./run.sh": error=8, Exec format error

-rwxr-xr-x run.sh

#!/bin/sh
echo "hello"

jshell> Runtime.getRuntime().exec("./run.sh")
$1 ==> Process[pid=262, exitValue=0]

$ docker run -it -e "hibernate.format_sql=true" bellsoft/liberica-openjdk-alpine:15 ash

set | grep hibernate

hibernate

$ docker run -it -e "hibernate.format_sql=true" bellsoft/liberica-openjdk-debian:15 bash

set | grep hibernate

<empty>

$ docker run -it -e "hibernate_format_sql=true" bellsoft/liberica-openjdk-alpine-musl:15 ash

set | grep hibernate

hibernate_format_sql='true'

$ docker run -it bellsoft/liberica-openjdk-alpine:8 jstack -h
...
Options:

-F to force a thread dump. Use when jstack <pid> does not respond (process is hung)
-m to print both java and native frames (mixed mode)
-l long listing. Prints additional information about locks
-h or -help to print this help message

$ docker run -it bellsoft/liberica-openjdk-alpine-musl:8 jstack -h
...
Options:

-l long listing. Prints additional information about locks
-h or -help to print this help message

$ docker run -it bellsoft/liberica-openjdk-debian:11 jstack -h
...
Options:

-l long listing. Prints additional information about locks
-h or -help to print this help message

Unifies platform support across community
and distributions. Helps maintenance and
port development for perfect small
containers. Liberica JDK Alpine musl
containers are tested and TCK-verified.

Different uses are possible.

OS + JDK 15 Image Wire Disk

bellsoft/liberica-openjdk-debian 126 MB 231 MB

bellsoft/liberica-openjdk-centos 183 MB 322 MB

bellsoft/liberica-openjdk-alpine 78 MB 132 MB

bellsoft/liberica-openjdk-alpine-musl 76 MB 107 MB

$ time docker pull bellsoft/liberica-openjdk-alpine-musl:latest
...
real 0m3.957s
user 0m0.026s
sys 0m0.061s

The amount of transferred data for
OS+JDK image can be decreased
to 76 MB, overall pull time drops
many times (like 28 s → 4 s or 6 s
→ 0.8 s).

We plan to stay
on Java 8.

— NN% of users

⦁ JDK 11 LTS
─ Not in mainline (yet)
─ Historical downports in Liberica 9+

⦁ JDK 8 LTS
─ Liberica 8u on Dockerhub

⦁ AArch64
⦁ OpenWRT

─ One more flavor of Raspberry Pi

