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 Mean opinion score (MOS)  

“Rate your experience from 

1-poor to 5-excellent”

 User perceived PLT (uPLT)

“Which of these two pages 

finished first ?”

 User acceptance 

“Did the page load fast 

enough ?”(Yes/No)

Data collection: Crowdsourcing campaigns 

Lab experiments 
• Small user diversity, volounteers
• Web browsing, but artificial websites
• Artificial controlled conditions

Crowdsourcing (payed crowdworkers)
• Larger userbase, but higher noise
• Side-to-side videos ≠ Web browsing!
• Artificial controlled conditions

Experiments from operational website
• Actual service users
• Browsing in typical user conditions
• Huge heterogeneity (devices/browsers/nets)

Ongoing, with 

(Award winning)
dataset 
[PAM18]

Collab with 

[WWW19]

https://webqoe.telecom-paristech.fr/data

https://webqoe.telecom-paristech.fr/data
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Models: Data driven vs Expert models 

Fit predetermined y=f(x) Learn y=f(x) 

x=vector of input features
optimal f(.) selected & tuned by machine learning

https://www.itu.int/rec/T-REC-G.1030/en

Weber Fechner 

Standard ITU-T G1030

[1] M. Fiedler et al. "A generic quantitative 

relationship between quality of experience 
and quality of service." IEEE Network, 2010

IQX Hypotesis

x=single scalar metric, generally Page Load Time (PLT)
f(.) = pre-selected by the expert

https://webqoe.telecom-paristech.fr/modelsUserQoE
y

[INFOCOM19]

More flexible
and (slightly)
more accurate
[PAM18]

Still room for improvement (see [WWW19] )

Comparison of the two models in [QoMEX-18] 

https://www.itu.int/rec/T-REC-G.1030/en
https://webqoe.telecom-paristech.fr/data
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SpeedIndex, RUMSI, PSSI

› Processing intensive   

› Only at L7 (in browser)

› Visual progress metric

ObjectIndex, ByteIndex and ImageIndex

› Lightweight

› ByteIndex also at L3 (in network)

› Higly correlated with SpeedIndex

› Possibly far from user QoE ?

Browser metrics: Time Instant vs Time Integral (2/2)

?
SpeedIndex
%of visual 
completeness
(histogram, 
rectangles or
SSim)

ObjectIndex
% of objects
downloaded

ByteIndex
% of bytes
downloaded

ImageIndex
% of bytes 
of images
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Browser metrics: Time Instant vs Time Integral (2/2)
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Browser metrics: Time Instant vs Time Integral (2/2)
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Browser (L7) Network (L3)
User 

Method: From raw packets to browser metrics (2/2)

Works with encryption
Handle multi-sessions (not in this talk)

Exact online algorithm for ByteIndex
Machine learning for any metric

Accurate on joint tests with Orange
Accurate for unseen pages & networks

Available soon into Huawei products
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 Expert-driven feature engineering 

› Explainable but inherently heuristic approach

› Hard to keep in sync with application/network change

Aftermath (1/3): From raw packets to rough sentiments

Possible outputsPossible inputs 

 Neural Networks

› Less interpretable but more versatile

› Downside: requires lots of samples....

› Feed NN with x(t) signal 

› Still lightweight

› Feed NN using a filmstrip  

› More complex 

› User feedback (e.g. MOS, user PLT, etc.)

› Smartphone sensors (eg happiness 

estimation via facial recognition)

› Brain signals acquired with sensors 

› Activity of brain areas correlated 

with user happiness 
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 World Wild Web 

› Huge diversity, not captured by single model 

 Increase accuracy

› Per-page QoE models

› Inherently non scalable

 Increase accuracy & scalability

› Per-page QoE models (eg Alexa top 100 pages)

› Aggregate QoE models (eg 100 clusters top 1M)

› Generic QoE model (for the tail up to 1B pages)

Aftermath (2/3): Divide et impera

Many per-page models

One average model

Alexa Top 1M, 100 clusters
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 Other applications/players are doing this already!

Sustained continuous user QoE indication benefits

› Useful samples for QoE management assessment, troubleshooting, regression detection, etc.

› Get continuous stream of samples for improving QoE = f(QoS) models on the long run

Very limited downsides (risk of annoying users if leveraging small panels)

Aftermath (3/3):  Keep collecting (and sharing) data

Facebook Skype Android Wikipedia Physical world

Did you 

find this

suggestion 

useful ?
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Documents
Datasets
Code

9k real 
human grades

10k automated
experiments

60k+ real
user grades 

Chrome plugin
implementation

https://webqoe.telecom-paristech.fr/

https://nonsns.github.io/paper/rossi19infocom-b.pdf
https://webqoe.telecom-paristech.fr/
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