
Shipping a performance API 
on Chromium

Experiences from shipping the 
Element Timing API



Nicolás Peña Moreno
Google Chrome Speed Metrics



Objectives of talk
● Explain the process involved in standardizing a web performance API and 

shipping it in Blink.
○ I have a 42 step checklist :)

● Encourage you to get involved!



Identify a problem

● For performance APIs: gap in measurement.
● Element Timing: measure image render time.

From stevesouders.com blog:

This is a hacky solution and does not necessarily provide an accurate 
timestamp.



Write an explainer: present problem
Element Timing problem:

● Developers know which are the critical elements.
● Browser knows when content has been painted on the screen.

Shubhie Panicker’s initial explainer:



Write an explainer: use cases
What user needs can be satisfied?
What are some examples of measurements that would be enabled by the 
new API?



Write an explainer: proposed solution?
A proposed solution is NOT a requirement of an explainer! Not ideal to have a 
concrete solution.

Element Timing proposal:

● Annotate hero elements
● Expose information via PerformanceObserver



Socialize explainer
● Present to W3C WebPerf and share explainer.

https://lists.w3.org/Archives/Public/public-web-perf/ 
● Publish on Web Platform Incubator Group (WICG) Discourse.

https://discourse.wicg.io/ 



Develop concrete proposal (1)
● Move explainer to WICG on GitHub. 

https://github.com/WICG/element-timing 
● Request design review from Technical Architecture Group (TAG).



Develop concrete proposal (2)
● Send Intent to Prototype 

(renamed from Implement).



Multiple Iterations



Implement the proposed API



Add web platform tests: harness

Import the testharness to enable testing:



Add web platform tests: image

Remove body margin and insert the hero image:



Add web platform tests: script



Draft spec Can reach out to experienced 
spec writer on IRC to get help 
through this process.

Spec characteristics
● Prose and algorithms
● Written in 

Bikeshed/ReSpec
● Interactions with other 

specs (HTML, DOM)
● No Chrome-specific 

jargon (need to make 
sense for any 
implementer).



Internal launch review
● Performance APIs generally require internal privacy and security 

reviews.
● WebPerf WG or TAG may also surface privacy and security concerns, 

and these should be addressed before launching an API.



(Optional) Origin Trial
https://github.com/GoogleChrome/OriginTrials/ 

● Allows experimenting with a new (not yet shipped) web platform feature!
○ Browser engineers love early feedback.
○ Changes to features after they have shipped can be hard.

● Interested web developers sign up for tokens.
● Only a small portion of page loads can access origin trial.

○ Prevents developers from depending on the experimental feature.



(Optional) Origin Trial: Intent to Experiment



(Optional) Origin Trial: feedback

Peter Hedenskog (Wikimedia):

We’d love to get more feedback from more developers, but we understand 
it’s a big time commitment to try out an API which may never ship.



Polish proposal
● Obtain signals from web 

developers and other 
browsers.

● WICG spec
● Chromium implementation
● Address feedback from TAG 

review.







Ship new API
● Send Intent to Ship and get approval from 3 Blink API owners.
● Ensure chromestatus.com has accurate information about the API.
● Flip implementation flag to ‘enable by default’.



Post-shipping work (1)
● Remove experimental flags.
● Continue conversations with WebPerf WG and eventually propose 

adopting the new API in the group.
● Address issues surfaced on GitHub repository.



Post-shipping work (2)
● Monitor usage and crashes
● We remove features that do 

not have multi-implementer 
support and have very little 
usage.



Summary:



Questions?

npm@chromium.org
Twitter: @NicPenaM
GitHub: @npm1


