Verifpal

Cryptographic protocol analysis
for students and engineers

58

Nadim Kobeissi
FOSDEM Brussels, February 2020

What 1s Formal Verification?

* Using software tools in order to obtain guarantees on the security of
cryptographic components.

* Protocols have unintended behaviors when confronted with an active
attacker: formal verification can prove security under certain active attacker
scenarios!

* Primitives can act in unexpected ways given certain inputs: formal
verification: formal verification can prove functional correctness of
implementations!

Formal Verification Today

Code and Implementations: F* Protocols: ProVerif, Tamarin
* Exports type checks to the Z3 theorem * Take models of protocols (Signal,
prover. TLS) and find contradictions to
* Can produce provably functionally queres.
correct software implementations of » “Can the attacker decrypt Alice’s first
primitives (e.g. Curve25519 in message to Bob?”
*
HACL®). * Are limited to the “symbolic model”,
* (Can produce provably functionally CryptoVerif works in the
correct protocol implementations “computational model”.
(Signal™).

Verifpal: Cryptographic protocol analysis for
students and engineers — Nadim Kobeissi

Symbolic Verification Overview

Main tools: ProVerif, Tamarin.

User writes a model of a protocol in action:
* Signal AKE, bunch of messages between Alice and Bob,
e TLS 1.3 session between a server and a bunch of clients,
* ACME for Let’s Encrypt (with domain name ownership confirmation...)

User writes queries:
* “Can someone impersonate the server to the clients?”
* “Can a client hijack another client’s simultaneous connection to the server?”

ProVerif and Tamarin try to find contradictions.

Symbolic Verification is
Wondertul

* Many papers published in the past 4 years: symbolic verification proving
(and finding attacks) in Signal, TLS 1.3, Noise, Scuttlebutt, Bluetooth, SG

and much more!

* This is a great way to work, allowing practitioners to reason better about
their protocols before/as they are implemented.

Why isn’t it used more?

Tamarin and ProVerif: Examples

rule Get_pk:
[IPk(A, pk)]
-->
[Out(pk)]

Tamarin

// Protocol
rule Init_1:
[Fr(~ekI), 'Ltk($I, ItkI)] gunate
-—>
[Init_1($I, $R, ~ekl)
, Out(<$I, $R, 'g' ~ ~eklI, sign{'l', $I, $R,'g"' ~ ~ekl }Itk

(also not fully

rule Init_2:
letY ='g"' ~ z // think of this as a group element check
in
[Init_1($I, $R, ~eklI)
, 'Pk($R, pk(ItkR))
, In(<$R, $I, Y, sign{'2', $R, $I, Y }ItkR>)

1
--[SessionKey($I,$R, Y N ~eklI)
, EXpR(2)
1->
[InitiatorKey($I,$R, Y N ~ekl)]

letfun writeMessage_a(me:principal, them:principal,
hs:handshakestate, payload:bitstring, sid:sessionid) =

let (ss:symmetricstate, s:keypair, e:keypair, rs:key, re:key,
psk:key, initiator:bool) = handshakestateunpack(hs) in

let (ne:bitstring, ns:bitstring, ciphertext:bitstring) = (empty,
empty, empty) in

let e = generate_keypair(key_e(me, them, sid)) in

let ne = key2bit(getpublickey(e)) in

let ss = mixHash(ss, ne) in
let ss = mixKey(ss, getpublickey(e)) in
let ss = mixKey(ss, dh(e, rs)) in

let s = generate_keypair(key_s(me)) in
[...]

event(RecvMsg(bob, alice, stagepack_c(sid_b), m))
(event(SendMsg(alice, ¢, stagepack_c(sid_a), m))) ||
((event(LeakS(phase0, alice))) && (event(LeakPsk(phaseO, alice,
bob)))) || ((event(LeakS(phase0, bob))) &&
(event(LeakPsk(phaseO, alice, bob))));

Verifpal: Cryptographic protocol analysis for 5
students and engineers — Nadim Kobeissi

Verifpal: A New
Symbolic Verifier

1. An intuitive language for modeling
protocols.

2. Modeling that avoids user error.

3. Analysis output that’s easy to
understand.

4. Integration with developer
workflow.

Verifpal: Cryptographic protocol analysis for
students and engineers — Nadim Kobeissi

A New Approach to Symbolic
Verification

User-focused approach... ...without losing strength

* An intuitive language for modeling * Can reason about advanced protocols
protocols. (eg. Signal, Noise) out of the box.

* Modeling that avoids user error. * Can analyze for forward secrecy, key

compromise impersonation and other

* Analysis output that’s easy to .
y P y advanced queries.

understand.
» Unbounded sessions, fresh values, and

* Integration with developer worktlow. other cool symbolic model features.

Verifpal: Cryptographic protocol analysis for
students and engineers — Nadim Kobeissi

Verifpal Language: Simple and
Intuitive

Simple Protocol

attacker[active]
principal Bob[] Alice Bob
principal Alicel |

generates a generates a

A ga = G"a

ga = G"a
] ga .
Alice -> Bob: ga

knows private ml

rincipal B
P epa 2l generates b

knows private ml gb = G*b
generates b el = AEAD_ENC(ga”b, ml, gb)
gb = G™b j gb, el
el = AEAD_ENC(ga™b, ml, gb)
1 el _dec = AEAD DEC(gb™a, el, gb)?
Bob -> Alice: gb, el
principal Alice[Alice Bob

el dec = AEAD_DEC(gb™a, el, gb)?

Verifpal: Cryptographic protocol analysis for
students and engineers — Nadim Kobeissi

Verifpal Language: Primitives

* Unlike ProVerif, primitives are built-in.

* Users cannot define their own
primitives.
* Bug, not a feature: eliminate user error

on the primitive level.

* Verifpal not targeting users interested
in their own primitives (use ProVerif,
it’s great!)

Verifpal: Cryptographic protocol analysis for

HASH(a, b...): x. Secure hash function, similar in practice to, for example, BLAKE2s [10].
Takes an arbitrary number of input arguments > 1, and returns one output.

MAC(key, message): hash. Keyed hash function. Useful for message authentication and
for some other protocol constructions.

ASSERT (MAC(key, message), MAC(key, message)): unused.
Checks the equality of two values, and especially useful for checking MAC equality.
Output value is not used; see §2.4.4 below for information on how to validate this check.

HKDF (salt, ikm, info): a, b.... Hash-based key derivation function inspired by the
Krawczyk HKDF scheme [11].

Essentially, HKDF is used to extract more than one key out a single secret value. salt and
info help contextualize derived keys. Produces an arbitrary number of outputs > 1.

students and engineers — Nadim Kobeissi

Verifpal Language: Primitives

* Unlike ProVerif, primitives are built-in.

ENC(key, plaintext): ciphertext. Symmetric encryption, similar for example

e Users cannot define their own ENC (Key, pLaintext): cip

prllnlthes. * DEC(key, ENC(key, plaintext)): plaintext. Symmetric decryption.
* AEAD_ENC(key, plaintext, ad): ciphertext. Authenticated encryption with
° Bug, not a feature: ellmlnate user error associated da.ta. ad repres.ents an addltl.onal‘payl.oad‘that is not.encrypted, bu.t that
L. must be provided exactly in the decryption function for authenticated decryption to
on the prlmltlve leVel. succeed. Similar for example to AES-GCM or to ChaCha20-Poly1305.

AEAD_DEC (key, AEAD_ENC(key, plaintext, ad), ad): plaintext. Authenticated
decryption with associated data. See §3.4.4 below for information on how to validate
successfully authenticated decryption.

* Verifpal not targeting users interested
in their own primitives (use ProVerif,
it’s great!)

Verifpal: Cryptographic protocol analysis for
students and engineers — Nadim Kobeissi

10

Verifpal Language: Primitives

* Unlike ProVerif, primitives are built-in.

e Users cannot define their own

* SIGN(key, message): signature. Classic signature primitive. Here, key

prlmlthGS. is a private key, for example a.
.. e SIGNVERIF(G"key, message, SIGN(key, message)): message. Verifies
* Bug, not a feature: eliminate user error if signature can be authenticated. If key a was used for SIGN, then SIGNVERIF
on the primitive level. will expect 6”a as the key value. Output value is not necessarily used; see

§3.4.4 below for information on how to validate this check.
* Verifpal not targeting users interested
in their own primitives (use ProVerif,
it’s great!)

Signal in Verifpal: State
Initialization

* Allce Wants tO lnltlate a Chat Wlth BOb Signal: Initializing Alice and Bob as Principals
* Bob’s signed pre-key and one-time pre- ot mtiee]
key are modeled. o rivate siongien

galongterm = G™alongterm
]
principal Bob[
knows public c0, cl, c2, c3, c4
knows private blongterm, bs
generates bo
gblongterm = G"blongterm
gbs = G"bs
gbo = G™bo
gbssig = SIGN(blongterm, gbs)

Signal in Verifpal: Key Exchange

* Alice receives Bob’s key information
and derives the master secret.

Signal: Alice Initiates Session with Bob

Bob -> Alice: [gblongterm], gbssig, gbs, gbo
principal Alicel
generates ael
gael = G™ael
amaster = HASH(cO, gbs”alongterm, gblongterm™~ael, gbs”ael, gbo™ael)
arkbal, ackbal = HKDF(amaster, cl, c2)

Verifpal: Cryptographic protocol analysis for

13
students and engineers — Nadim Kobeissi

Signal in Verifpal:

Signal: Alice Encrypts Message 1 to Bob

principal Alice[

generates ml, ae2

gae2 = G™ae2

valid = SIGNVERIF(gblongterm, gbs, gbssig)?

aksharedl = gbs™ae2

arkabl, ackabl = HKDF(aksharedl, arkbal, c2)

akencl, akenc2 = HKDF(HMAC(ackabl, c3), cl, c4)

el = AEAD_ENC(akencl, ml, HASH(galongterm, gblongterm, gae2))
]
Alice -> Bob: [galongterm], gael, gae2, el

Messaging

Signal: Bob Decrypts Alice’s Message 1

principal Bob[
bksharedl = gae2”bs
brkabl, bckabl = HKDF(bksharedl, brkbal, c2)
bkencl, bkenc2 = HKDF(HMAC(bckabl, c3), cl, c4)

ml_d = AEAD_DEC(bkencl, el, HASH(galongterm, gblongterm, gae2))

Verifpal: Cryptographic protocol analysis for
students and engineers — Nadim Kobeissi

14

Signal in Verifpal: Queries and
Results

* Typical confidential and authentication
queries for messages sent between

Signal: Confidentiality and Authentication Queries

Alice and Bob.
queries|[
. o« e confidentiality? ml
 All queries pass! No contradictions! authentication? Alice -> Bob: el

confidentiality? m2
authentication? Bob -> Alice: e2

* Not surprising: Signal is correctly confidentiality? n3
modeled, long-term public keys are
guarded; signature verification is
checked.

Signal: Initial Analysis Results

Verifpal! verification completed at 12:36:53

Protocols Analyzed with Verifpal

 Signal secure messaging
protocol.

e Scuttlebutt decentralized
protocol.

* ProtonMail encrypted
email service.

* Telegram secure
messaging protocol.

Projects Using Verifpal

The following projects have used Verifpal as part of their
development process. Please send an email to the ¢

if you would like your project to be
added:

Verifpal: Cryptographic protocol analysis for
students and engineers — Nadim Kobeissi

16

Verifpal 1n the Classroom

18 Verifpal User Manual

 Verifpal User Manual: easiest way to N ““
learn how to model and analyze protocols \ L ”
on the planet. s ::;“5:::::5:7"’

* NYU test run: huge success. 20-year-old .
American undergraduates with no F—
background whatsoever in security
were modeling protocols in the first two
weeks of class and understanding
security goals/analysis results.

2.6 MESSA

rk is simple. Only constants may be sent

Verifpal: Cryptographic protocol analysis for
students and engineers — Nadim Kobeissi

17

Verifpal 1n the Classroom

e Upcoming Eurocrypt 2020 affiliated

event:

https://verifpal.com/eurocrypt2020/ —

Verifpal tutorial!

* Verifpal has a place in your
undergraduate classroom and will do a
better job teaching students about
protocols and models than anything else

in the world.

18 Verifpal User Manual

Guarding the Right Constants

Verifpal allows you 1o guard constants
a Hon

Inthe sccond message from the
by brackets (11). This makes it
active attacker can st

ove example, we see that, gb s sumounded
ing that while an
they cannot tamper with it. In that sense it is
acker.

‘guarded” against the active

2.7 QUERIES

A Verifpal model is always concluded with a ueries block, which contains
essentially the questions that we will ask Verifpal to answer for us as a result
of the model's analysis. Queries have an important role to play in a Verifpal
model’s constitution. The Verifpal lar
describe, but you may benefit from learning more on how to properly use
odels. For more information on queries, see §3. §2.8 below
sin your model

uage makes them very simple to

shows a quick example of how 1o illustrate quer

2.8 A SIMPLE COMPLETE EXAMPLE

1 provides a full model of a naive protocol where Alice and Bob only
ticated public keys (6% and G*b). Bob then proceeds

questions:

We call this a Mayor-in-he- Middie atack

T

il s

ALICE'S EPHEMERAL KEY...
IT’S THE ONLY THING
KEEPING HER MESSAGES
SAFELY ENCRYPTED...

CHAPTER 2. THE VERIFPAL LANGUAGE 7

Exanple Equations

principal Server(
ates x

In the above, gxy and gyx are considered equivalent by Verifpal. In Verifpal,
r root generator. This mirrors

YEARS EARLIES

: gl

SOMETHING'

ﬁ—\ NOT RIGHT,
VEBIFPAL.

. all equations can only have two.
constants (ab), but as we can see above, equations can be built on top of

other equations (as in the case of gxy and gyx).

26 M

Sending messages over the network is simple. Only constants may be sent
within messages:

Exanple: Messages

Alice -> Bob: ga, el
Bob -> Alice: [gb], €2

Let's look at the two messages above. In the first, Alice is the sender and Bob
is the recipient. Notice how Alice is sending Bob her long-term public key
ga = 6. An active attacker could intercept ga and replace it with a value
that they control. But what if we want to model our protocol such that Alice
has pre-authenticated” Bob's public key gb = 6~b? This is where guarded
1

constants become us

pre-authentication” refers to Alice confirming the value of Bob's public key before
the protocol session begins. This helps avoid having an acti
fake public key for Bob. This fake public key could instead be th

| oo m— _ By

er rick Alice to use a
acker's own public key.

Verifpal: Cryptographic protocol analysis for
students and engineers — Nadim Kobeissi

18

https://verifpal.com/eurocrypt2020/

Verifpal Extensions

* Visual Studio Code: currently syntax
highlighting, but much more planned in
the future.

* Vim: syntax highlighting.

Verifpal: Cryptographic protocol analysis for
students and engineers — Nadim Kobeissi

19

Try Verifpal Today

Verifpal is released as free and open source
software, under version 3 of the GPL.

Check out Verifpal today:

verifpal.com

Support Verifpal development:

verifpal.com/donate

Protocol Builder's

Warkbench

Verifpal: Cryptographic protocol analysis for students and engineetsi///ll,

20

