Userspace networking: beyond
the kernel bypass with RDMA!

Using the RDMA infrastructure for performance while retaining kernel
integration

Benoit Ganne, bganne@cisco.com

FOSDEM20


mailto:bganne@cisco.com

Why a native network driver?

* Why userspace net.worklng? VPP IPv4 forwarding PDR, 1core, 2M routes
* Performance (avoid kernel overhead) 18

* Update network functions seamlessly (no reboot
required, containerization) 16

* Why your own network driver? 14

. Per)formance (metadata translation tax, feature 12
tax

* Ease-of-use (no reliance on hugepages, etc.)

* Why you should think twice?

* No integration with kernel (interface fully owned
by userspace)

* You care about rx/tx packets but device
initialization & setup is 95% of the work

* Hardware is hard (more on that later)

Mpps

o N B~ O 00

B Native H DPDK

Source: https://docs.fd.io/csit/master/report/vpp performance tests/packet throughput graphs/ip4-2n-skx-xxv710.html

30/01/2020 FOSDEM20 2


https://docs.fd.io/csit/master/report/vpp_performance_tests/packet_throughput_graphs/ip4-2n-skx-xxv710.html

RDMA

* « Remote Direct Memory Access »

* Designed for message passing and
data transfer HW
* Has evolved to use Ethernet transport %

(iWARP, RoCE)

* Key properties ;

* Hardware offload

* Kernel bypass

e Zero Copy data transfer
* High network bandwidth User

=» Great for kernel networking!

30/01/2020 FOS D E M'ZO



EXte n d l n g R D I\/I A fo r Et h e rn Et Incoming packets are steered to Linux

netdev or userspace application based on

* Not designed for efficient Ethernet
communication — but!

* Ethernet-capable HW (initially for
transport)

* High performance (200Gbps today)
* Kernel bypass with well established API

and native Linux kernel support Kernel :
RDMA uAPI Netstack

 Why not extend it to support
userspace networking?
« Introduce new IBV_QPT_RAW_PACKET
queue pair type
* Support for bifurcation with flow steering

* Keep your Linux netdev
e Support MACVLAN, IPVLAN model...

HW

DMA

User

30/01/2020 FOSD EM'ZO 4



Using RDMA for Ethernet

How to send 20 Mpps with 1 CPU

1. Get a handle to the device you want to /* step 1: get device handle */
dev = ibv_get device_ list(&dev_nb);
use ctx = ibv _open device(dev[i]);
NT /* step 2: initialize queues for RX/TX */
2. |Initialize queues cq = ibv create cq(ctx, TXNB, @, 0, 0);

* Queue Pair (QP) = Submission Queue (SQ) + pd = ibv_alloc_pd(ctx);

Completion Queue (CQ) fIE is?fr‘eat?_qp(pil,-ttWE=IBV_QPT_RAH_PACKET); I )
: , _ : ibv_modify_qp (qp, state=IBV_QPS_INIT, IBV_QP_STATE | IBV_QP_PORT);
* Protection Domain (PD) = where the NIC s ibv_modify gp (gp, state=IBV_QPS_RTR, IBV_QP_STATE);
allowed to read/write data (packets) ibv_modify_qp (gp, state=IBV_QPS_RTS, IBV_QP_STATE);
mr = ibv _reg mr(pd, addr, len, 8);
3. Send paCketS /* step 3: RX/TX in a busy loop */
e Put Work Queue Elements (WQE — kind of '-'~'h11?b(1) il
|OV) in SQ ibv _poll cq (cq, TXNB, wc);

] ibv_post send(qp, wr[wc[i].wr_id], ©);
* Notify new packets to send )

* Poll CQ for completion
Full example at https://github.com/bganne/rdma-pktgen

30/01/2020 FOSDEM20 5



https://github.com/bganne/rdma-pktgen

Going deeper with Direct Verbs

e RDMA user API is ibverb I+ comvert ibverb S0/Co 10 DY S0/C0 /
* Simple enough, mostly standard, struct mlxSdv_obj obj = {

.qp = { .1n = ibv qp, .out = dv gp },
open-source .cq = { .in = ibv_cq, .out = dv_cq },
s
* Not full performance (metadata mlx5dv_init obj (&obj, MLX5DV_OBJ_CQ | MLX5DV_OBJ QP);

translation tax, feature tax) /* get 5Q and doorbell addresses */

. sq_base = dv_gp->sq.buf;
* DlreCt Verbs sq_dbrec = dv_qp->dbrec;
. . db = d ->bf.reg;
* ibverb extension to access DMA c 2 — v ved wae. cnts

ring-buffers directly

/* get CQ and doorbell addresses */

* Hardware-dependent! cq_cqes = dv_cq->buf;
. cq dbrec = dv cqg->dbrec;
e Setup done through ibverb, then ca 52 - dv camseqe onts

get DMA rings addresses

30/01/2020 FOSDEM20 6



VPP native RDMA driver

* ibverb version
* Available since 19.04
* ~ 20 Mpps L2-xconnect per core

e Direct Verb

* Development underway
* Hardware is hard: while trying to debug my driver | almost bricked my NIC

* Next
e Add support for hardware offloads (checksum offload, TSO)

FOSDEM20



A call to action

e We love this model

* No need to write code boilerplate to initialize the NIC: we can focus on what matters
(rx/tx packets)

* Seamless integration with Linux kernel
* Great performance

* But is has limitations
* Need RDMA-capable NIC: must support Hardware security model, etc.
* Only supported on Mellanox for now

* Could other technologies enable this approach?

e Disclaimer: a bit outside of my domain knowledge here...
* vfio-mdev?
 AF_XDP?

FOSDEM20



