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Traditional OS vs. Specialized Unikernel

▌One application à Flat and single address space
lConcept: Multiple apps => multiple Unikernels, isolated by Hypervisor
▌Thin kernel layer, only what application needs
lSingle monolithic binary that contains OS and application
▌Further advantages from specialization
lPerformance and efficiency; reduced attack vector; small memory footprint
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The Potential of Specialization

▌Fast instantiation, destruction and migration time
l10s of milliseconds or less (and as little as 2.3ms)

(LigthVM [Manco SOSP 2017], Jitsu [Madhvapeddy, NSDI 2015])

▌Low memory footprint
lFew MBs of RAM or less (ClickOS [Martins NSDI 2014])

▌High density
l8k guests on a singlex86  server (LigthVM [Manco SOSP 2017])

▌High Performance
l10-40Gbit/s throughput with a single guest CPU

(ClickOS [Martins NSDI 2014], Elastic CDNs [Kuenzer VEE 2017])

▌Reduced attack surface
lSmall trusted compute base
lStrong isolation by hypervisor
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The Unikraft Way: Library Pool

▌Everything is a (micro-)library
lDecomposed OS functionality
•Schedulers, memory allocators, VFS, filesystems

lArchitectures, platform support, drivers
•Virtualization environments, bare-metal

lApplication interfaces
•POSIX, Linux system call ABI

▌Specialization: Highly configurable
lCompile-in only features that your application and environment needs

▌Most common libraries are in Unikraft repository
▌Applications and additional features can be hosted off-tree

▌(Micro-)Libraries pool shared across unikernel projects
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The Unikraft Way: Building

▌make-based build system
lBuilds each library and links them

▌KConfig-driven configuration
lLinux style: make menuconfig
lMenu for selecting and configuring libraries
lSave and restore configurations

▌kraft
lCompanion tool
• Further improves user experience

lSupports:
• Defining, configuring, building, and running Unikraft 
unikernel applications

> kraft update
> kraft init –a APPNAME
> kraft build



Community Status and Achievements
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Timeline

▌Early 2017: NEC-Internal project launch; 0.1
lBuild system
l Initial port from Mini-OS and Solo5/KVM
▌Dec/2017: Public Launch; RELEASE-0.2 Titan
lAs Xen Incubator project
lArm32 Xen, x86 Xen, x86 KVM, x86 Linux
lBinary buddy allocator (heap)
lCooperative scheduling
▌Feb/2019: RELEASE-0.3 Iapetus
lArm64 support for KVM
lNetworking (uknetdev, lwip, virtio-net)
l Initial VFS with in-RAM filesystem
l newlib
▌Feb/2020: RELEASE-0.4 Rhea
lSupport for External platforms, starting with Solo5
l Language support: C++, Python, Go, Lua, JavaScript, WebAssembly, Ruby
l Tracepoint subsystem
l 9pfs filesystem support (Xen, KVM)
l Libraries: musl (initial) intel-intrinsics, libunwind, libuuid, pthread-

embedded, compiler-rt, eigen, fp16, fxdiv, pthreadpool, etc.
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Contributions by Affiliation (since 0.3)

NEC; 402

University 
Politehnica of 

Bucharest; 506

Arm; 127

University 
of Liège; 

10

Individual; 
2

NEC; 9

University 
Politehnica of 
Bucharest; 11

Arm; 4

University of 
Liège; 2

Individual; 2

Signed-off-by’s
Total: 1047

Number of contributors
Total: 28



Ongoing and upcoming Projects
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Binary Compatible Unikernels

▌Even with complete library pool,
manual porting is non-trivial
lExisting build system need to be ported or 

instrumented (e.g., cross-compilation)
lPre-compiled binaries cannot be executed 

(e.g., proprietary executables)

▌ELF binary compatibility, Linux ABI
lSame executable for Linux should run on 

Unikraft without recompilation
lELF loader
lSystem call emulation

[1] Pierre et. al, A Binary-Compatible Unikernel, VEE’19
[2] Kiviti et. al, OSv—Optimizing the Operating System for Virtual Machines, USENIX ATC ’14

Image: https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
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Language Runtimes

▌Support applications written in higher-level language 
as Unikernel
lC++, Rust, Go, Ruby, Javascript (v8), Python, Lua WebAssembly

▌Example: WebAssembly
lSeamless programming experience

from browser, to cloud, to IoT
lTrying with Mozilla and WebAssembly community

Unikernel Image sizes
(uncompressed, Xen)

Micropython 828 KB
Python 2 3,9 MB
Go runtime 552 KB

Browser Cloud IoT
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NFV

▌Virtualized Network Functions
lPackage vNF directly as VM with Unikraft
lRemove maintenance effort of hosting OS
lMinimal OS overhead
lMinimal OS noise
lHigh networking performance & throughput

▌Click
lProgrammable vNF

▌Intel DPDK
lDataplane development Kit
lSDK for building high-performance VNFs
lDirectly build Unikernel instead of kernel-bypassing application

▌eBPF
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Hardening

▌Already small attack vector due to specialization

▌Common attack prevention features need to be 
implemented1, for instance:
lASLR (via boot loader or toolstack)
lStack canaries
lPage protection bits
lHeap integrity checks

▌Enable enhanced preventions with lower performance 
costs in an unikernel
lMake direct use privileged functionality
lE.g., secure memory allocators based on page permissions2

[1] NCC Group, Assessing Unikernel Security,
https://www.nccgroup.trust/us/our-research/assessing-unikernel-security/

[2] Oscar: A Practical Page-Permissions-Based Scheme for Thwarting Dangling Pointers
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/dang

https://www.nccgroup.trust/us/our-research/assessing-unikernel-security/
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/dang
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Application Porting

▌Initial set of ported application
lTypical for cloud deployments
lLearn about missing components in Unikraft

▌Webservers
lNginx, lighttpd

▌Databases
lMemcached, Redis, sqlite

▌Machine Learning
lPytorch

SQLite Unikernel

Image size (uncompressed, Xen) 844 KB



Demo Time
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Join us!

▌Project page
lwww.unikraft.org
▌Documentation
ldocs.unikraft.org
▌Sources (GIT)
lxenbits.xen.org/gitweb/ (Namespace: Unikraft)
lgithub.com/unikraft
▌Contributing
lminios-devel@lists.xen.org (Shared mailing list)
lhttps://patchwork.unikraft.org
▌IRC Channel on Freenode
l#unikraft

http://www.unikraft.org/
http://docs.unikraft.org/
https://xenbits.xen.org/gitweb/
https://github.com/unikraft
mailto:minios-devel@lists.xen.org
https://patchwork.unikraft.org/



