
Simon Kuenzer <simon.kuenzer@neclab.eu>
Lead Maintainer and Senior Researcher
NEC Laboratories Europe GmbH

A Unikernel Toolkit

This work has received funding from the European Union’s Horizon 2020 research and
innovation program under grant agreements no. 675806 (“5G CITY”) and no. 825377
(“UNICORE”). This work reflects only the author’s views and the European
Commission is not responsible for any use that may be made of the information it
contains.

FOSDEM 2020

2 © NEC Corporation 2020

Traditional OS vs. Specialized Unikernel

▌One application à Flat and single address space
lConcept: Multiple apps => multiple Unikernels, isolated by Hypervisor
▌Thin kernel layer, only what application needs
lSingle monolithic binary that contains OS and application
▌Further advantages from specialization
lPerformance and efficiency; reduced attack vector; small memory footprint

Unikernel

Kernel

Hypervisor / bare-metal

Application
Lib A

Target platform

Lib B
U

S
K
S

Application
Lib A Lib B

3 © NEC Corporation 2020

The Potential of Specialization

▌Fast instantiation, destruction and migration time
l10s of milliseconds or less (and as little as 2.3ms)

(LigthVM [Manco SOSP 2017], Jitsu [Madhvapeddy, NSDI 2015])

▌Low memory footprint
lFew MBs of RAM or less (ClickOS [Martins NSDI 2014])

▌High density
l8k guests on a singlex86 server (LigthVM [Manco SOSP 2017])

▌High Performance
l10-40Gbit/s throughput with a single guest CPU

(ClickOS [Martins NSDI 2014], Elastic CDNs [Kuenzer VEE 2017])

▌Reduced attack surface
lSmall trusted compute base
lStrong isolation by hypervisor

4 © NEC Corporation 2020

Application Domains

Fast boot,
migration
destroy

Resource
efficient

High
performance

Mission
critical

Minimal SW Stack

Reactive vNFs,
Serverless,
Lambda functions,
IoT,
etc.

Minimal SW Stack

Serverless,
(Per-customer) vNFs,
IoT,
MEC,
etc.

Small code base
à Low attack surface
à Cheaper

verification

Automotive,
(Industrial) IoT,
etc.

Specialization

NFV,
MEC,
etc.

5 © NEC Corporation 2020

The Unikraft Way: Library Pool

▌Everything is a (micro-)library
lDecomposed OS functionality
•Schedulers, memory allocators, VFS, filesystems

lArchitectures, platform support, drivers
•Virtualization environments, bare-metal

lApplication interfaces
•POSIX, Linux system call ABI

▌Specialization: Highly configurable
lCompile-in only features that your application and environment needs

▌Most common libraries are in Unikraft repository
▌Applications and additional features can be hosted off-tree

▌(Micro-)Libraries pool shared across unikernel projects

6 © NEC Corporation 2020

The Unikraft Way: Building

▌make-based build system
lBuilds each library and links them

▌KConfig-driven configuration
lLinux style: make menuconfig
lMenu for selecting and configuring libraries
lSave and restore configurations

▌kraft
lCompanion tool
• Further improves user experience

lSupports:
• Defining, configuring, building, and running Unikraft
unikernel applications

> kraft update
> kraft init –a APPNAME
> kraft build

Community Status and Achievements

8 © NEC Corporation 2020

Timeline

▌Early 2017: NEC-Internal project launch; 0.1
lBuild system
l Initial port from Mini-OS and Solo5/KVM
▌Dec/2017: Public Launch; RELEASE-0.2 Titan
lAs Xen Incubator project
lArm32 Xen, x86 Xen, x86 KVM, x86 Linux
lBinary buddy allocator (heap)
lCooperative scheduling
▌Feb/2019: RELEASE-0.3 Iapetus
lArm64 support for KVM
lNetworking (uknetdev, lwip, virtio-net)
l Initial VFS with in-RAM filesystem
l newlib
▌Feb/2020: RELEASE-0.4 Rhea
lSupport for External platforms, starting with Solo5
l Language support: C++, Python, Go, Lua, JavaScript, WebAssembly, Ruby
l Tracepoint subsystem
l 9pfs filesystem support (Xen, KVM)
l Libraries: musl (initial) intel-intrinsics, libunwind, libuuid, pthread-

embedded, compiler-rt, eigen, fp16, fxdiv, pthreadpool, etc.

9 © NEC Corporation 2020

Contributions by Affiliation (since 0.3)

NEC; 402

University
Politehnica of

Bucharest; 506

Arm; 127

University
of Liège;

10

Individual;
2

NEC; 9

University
Politehnica of
Bucharest; 11

Arm; 4

University of
Liège; 2

Individual; 2

Signed-off-by’s
Total: 1047

Number of contributors
Total: 28

Ongoing and upcoming Projects

11 © NEC Corporation 2020

Binary Compatible Unikernels

▌Even with complete library pool,
manual porting is non-trivial
lExisting build system need to be ported or

instrumented (e.g., cross-compilation)
lPre-compiled binaries cannot be executed

(e.g., proprietary executables)

▌ELF binary compatibility, Linux ABI
lSame executable for Linux should run on

Unikraft without recompilation
lELF loader
lSystem call emulation

[1] Pierre et. al, A Binary-Compatible Unikernel, VEE’19
[2] Kiviti et. al, OSv—Optimizing the Operating System for Virtual Machines, USENIX ATC ’14

Image: https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

12 © NEC Corporation 2020

Language Runtimes

▌Support applications written in higher-level language
as Unikernel
lC++, Rust, Go, Ruby, Javascript (v8), Python, Lua WebAssembly

▌Example: WebAssembly
lSeamless programming experience

from browser, to cloud, to IoT
lTrying with Mozilla and WebAssembly community

Unikernel Image sizes
(uncompressed, Xen)

Micropython 828 KB
Python 2 3,9 MB
Go runtime 552 KB

Browser Cloud IoT

13 © NEC Corporation 2020

NFV

▌Virtualized Network Functions
lPackage vNF directly as VM with Unikraft
lRemove maintenance effort of hosting OS
lMinimal OS overhead
lMinimal OS noise
lHigh networking performance & throughput

▌Click
lProgrammable vNF

▌Intel DPDK
lDataplane development Kit
lSDK for building high-performance VNFs
lDirectly build Unikernel instead of kernel-bypassing application

▌eBPF

14 © NEC Corporation 2020

Hardening

▌Already small attack vector due to specialization

▌Common attack prevention features need to be
implemented1, for instance:
lASLR (via boot loader or toolstack)
lStack canaries
lPage protection bits
lHeap integrity checks

▌Enable enhanced preventions with lower performance
costs in an unikernel
lMake direct use privileged functionality
lE.g., secure memory allocators based on page permissions2

[1] NCC Group, Assessing Unikernel Security,
https://www.nccgroup.trust/us/our-research/assessing-unikernel-security/

[2] Oscar: A Practical Page-Permissions-Based Scheme for Thwarting Dangling Pointers
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/dang

https://www.nccgroup.trust/us/our-research/assessing-unikernel-security/
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/dang

15 © NEC Corporation 2020

Application Porting

▌Initial set of ported application
lTypical for cloud deployments
lLearn about missing components in Unikraft

▌Webservers
lNginx, lighttpd

▌Databases
lMemcached, Redis, sqlite

▌Machine Learning
lPytorch

SQLite Unikernel

Image size (uncompressed, Xen) 844 KB

Demo Time

17 © NEC Corporation 2020

Join us!

▌Project page
lwww.unikraft.org
▌Documentation
ldocs.unikraft.org
▌Sources (GIT)
lxenbits.xen.org/gitweb/ (Namespace: Unikraft)
lgithub.com/unikraft
▌Contributing
lminios-devel@lists.xen.org (Shared mailing list)
lhttps://patchwork.unikraft.org
▌IRC Channel on Freenode
l#unikraft

http://www.unikraft.org/
http://docs.unikraft.org/
https://xenbits.xen.org/gitweb/
https://github.com/unikraft
mailto:minios-devel@lists.xen.org
https://patchwork.unikraft.org/

