
Phantom OS
Fosdem 2020

Why new OS

The only OS concept that exists is Unix. Even Win NT is
Unix like, more or less.

Unix is based on what was possible half a century ago

Unix is based on what was possible, not what is needed

Traditional big kernel is not a good solution, hence all
attempts to create a microkernel OS or, at least, move
part of OS services out of kernel

Why not microkernel
Microkernel relies on object based cross-address space IPC

All attempts to build remote object access failed because of
transaction cost

The question is - do we really have to have separate address
spaces? Why?

As Java/.Net/name your modern language application servers
show, if we can control address calcualtions, we can protect
information on per object basis in one big address space.

Why should program die?
There’s no reason.

If we replace microkernel environment with global address
space containing managed code, components can
communicate at no cost, by simply sharing pointers one with
other.

But then we have a problem if we keep pointer to some service,
and that service is not yet restarted after OS reboot.

Well, lets design OS so that applications do not have to stop
when OS kernel reboots.

What Phantom OS is (1)

Persistent virtual memory, one global address space.
Memory state is restored on OS restart.

Bytecode virtual machine (more or less language
agnostic), running in persistent memory.

Very fast reboot: OS does not have to rebuild
environment from scratch, running code is just paged
in from disk. Paging is cheap.

What Phantom OS is (2)
Fault tolerant: OS state guaranteed to survive
blackouts and hardware malfunctions. If machine is
broken, OS image can restart from last checkpoint on
a new hardware. It is possible to keep OS state on
remote server.

Secure: virtual machine is designed to protect caller
from callee completely, method can’t access caller’s
stack. Actually code can access nothing but this and
arguments.

Not POSIX, but…
Native Phantom OS personality is not POSIX. It is seen to native
code as an object-oriented library partially implemented in
kernel.

Native Phantom code can be written without access to file
system. As all variables are persistent, there’s no need to save
state to file to survive OS restart.

Still, there is FS support in Phantom.

There’s even simple and limited POSIX subsystem. Not
persistent. Yet?

Save state

If we want user mode code to survive OS reboot, we
have to save complete user land state.

Make sure that state is in memory (not in registers,
kernel memory, etc)

Dump all virtual memory

Not stopping world. Frequently. Efficiently.

Snapshots
Phantom OS persistence is based on snapshots. Each
snapshot is a synchronous copy of virtual memory state.

Taking snapshot does not stop or pause OS or user
code threads.

There are two (or more) snapshots exist on disk so that
fault during taking a snapshot does not break following
OS restart. Snapshots reuse unchanged data from
previous snapshots.

Internal classes
Userland runtime environment is object oriented.
Anything up to single integer is an object of some class.

Some classes are plain (user) ones, some are internal
(native) and implemented as kernel code.

Internal classes can request to be called on OS kernel
restart before all the user land threads will continue. It
can be used to restore corresponding kernel state for
such object to continue its service.

Special cases
Extra fast restart: it is possible to keep snapshots in RAM,
MRAM, or interleaved flash. This way restart can be possibly
done in extremely short time.

Low power consumption: Snapshot generation period can be
controlled and if extended, disk subsystem power consumption
can be reduced. Additionally, ping style IO does not consume
CPU at all. No FS structure to update, no IO buffers to move.

Extra reliable: It is easy to keep a completely synchronised
remote copy of snapshots to be able to restart even if hardware
is destroyed completely.

Kernel is non-persistent

Kernel restarts from scratch, its state is not saved.

It means that no blocking syscalls possible: it will be
impossible to recreate state of such call.

As a workaround, blocking calls interrupted by OS
shutdown will be restarted on next OS start.

Not so simple
Userland is huge data segment filled with objects
belonging to different threads, users or even other
network nodes.

No manual memory freeing can be used. Your object can
be shared with other thread or over the net. Just GC.

Size of data segment is nearly size of disk - all the data is
memory mapped for native code. Think of terabytes.

Doing a GC for such a huge memory is unusual.

2 GC
First GC has to be fast, simple, and be able to release about
90% of garbage, especially - short living objects. We user
refcount.

Second GC can be (extremely) slow, but has to be able to
release any kind of garbage (loops).

Second GC works on a… snapshot. This way it can be
implemented in a stop the world fashion. Its world is already
stopped.

Those two must never touch same part of memory.

Blocking sys calls
Impossible without special support

Kernel is not persistent, if thread is in kernel code, its state can’t be
restored

Modifications to the persistent memory from kernel possibly non-
atomic

Blocked system call restart as a solution

Blocked sys call is atomic from the snapshot system point of view,
either completed or not started. Parameters are saved until it is
completely done.

Migration path

Work in progress - convertor of JVM byte code to
Phantom OS byte code. Current state - it is possible to
convert simplest code. Main issue - basic class lib
classes for Phantom.

Work in progress - direct compilation of Python to
Phantom.

Experiment: Managed C code execution. Just started.

Portability
Most mature code is for x86 only.

Arm port: was done 4 years ago, kernel regression tests
passed, stopped on writing device drivers. Not updated,
needs update for current CPU modifications.

MIPS port: started, code compiled but not all kernel
regress tests passed. Not active.

General 64/128 bit support: compiled for 64 and 128
bits architectures to find out possibly problematic places.

More

Realtime scheduler, some of kernel modules are
realtime threads.

Network paging, paging IO UDP based server for Linux

SMP ready, but not tested regular basis, not stable

CI and regression tests
CI includes regression tests for kernel primitives in kernel mode,
kernel primitives in user mode.

Manually run compiler regression tests, byte code virtual machine
regression tests.

User mode environment used to test user mode code.

Kernel is tested in QEMU, some versions passed 100+ abrupt
reboots restoring persistent memory state. Simple applications
continued to run.

Kernel is able to boot on real hardware. Manual tests.

Code update

In persistent environment updating application code is
not a simple task.

Class versions - simple but helps just in some cases.

Hot patch - not yet implemented, not simple.

Code organisation matters. Separate content from
processing classes.

What do I look for

Collaborants and contributors, kernel, VM, compiler, UI,
drivers, CI and tests, etc.

Projects to use Phantom OS as base or part

Partnership on project or parts. For example, byte
code virtual machine can be used apart.

Usual Q & A
Q: Now you can’t restart failing application?

A: You still can, but application can be sure that it is not
stopped by kernel reboot. Just your will.

Q: Hardware based nonvolatile RAM makes any OS
persistent.

A: Actually, it is not so simple. Hardware state is not
saved in RAM anyway, you have to handle restarts even
is RAM state is intact.

Contacts
Dmitry Zavalishin, dz@dz.ru

https://github.com/dzavalishin/phantomuserland

https://phantomdox.readthedocs.io

mailto:dz@dz.ru
https://github.com/dzavalishin/phantomuserland
https://phantomdox.readthedocs.io

