m) Componolit

Secure Systems Engineering

Gnheiliss
A nice component framework in SPARK

Johannes Kliemann
FOSDEM, Brussels, 2020-02-02




Component -based Architectures
Trusted Components

m Can’t reimplement everything
m Solution: software reuse
= Untrusted software (gray)
= Policy object (green)
= Client software (orange)
m Policy and proxy components
= Formally verified
= Limited complexity

2020-02-02

m) Componolit

Secure Systems Engineering

Protocol validator

(e.g. TLS)
B =
Network Web
Stack browser



m) Componolit

Secure Systems Engineering

Ensuring Correctness

Prerequisites
m Correctness by proof m Reusability

= Absence of runtime errors = Proofs require effort

= Functional correcthess = Abstraction from actual platform
m Tools m Provability

=« Formalization language = Formal specification

= Mapping between = Manageable complexity

implementation and proof = Deterministic behaviour

2020-02-02



Correctness by Proof and Tools

SPARK

® Programming Language
= Based on Ada
= Compilable with GCC and LLVM
= Customizable runtime

= Contracts (preconditions,
postconditions, invariants)

m Verification Toolset
= Absence of runtime errors
= Functional correctness

2020-02-02

m) Componolit

Secure Systems Engineering

function Abs (I :
return Integer
with
Pre => I > Integer’First,
Post => Abs’Result >= 0;

Integer)

procedure Inc
(I : in out Integer)

with
Pre => I < Integer’Last,
Post => I =101ld + 1,
Global => null;



m) Componolit

Secure Systems Engineering

Provability and Reusability

Gneiss
m Reusability m Provability
= Platform abstraction = Platform formalization
= Interface mappable to multiple = Assumptions coarse enough to
different semantics be valid on multiple platforms
= Only dependencies satisfiable by = Assumptions strong enough to
all platforms ease proving

2020-02-02



m) Componolit

Secure Systems Engineering

Example: Block Client

2020-02-02



Block Devices
Client Interface

m Block device

= Storage device of equally sized
blocks

= Block size is typically 512 or
4096 bytes

m Packet descriptor
= Starting block number
= Amount of blocks
= Read/Write/Sync/Trim
= Memory location

2020-02-02

m) Componolit

Secure Systems Engineering

m Create packet descriptor

m Allocate memory for request

m (write data)

B Send request to block device

B Receive answer from block device
m (read data)



Gneliss Block Client
Formalizing properties

m Formalize properties of platform
API

2020-02-02

Packet object is needed
Packet object can always be
initialized

Request memory must be
allocated separately
Memory allocation might fail
Submitting must be checked

Submitting works always if ready

m) Componolit

Secure Systems Engineering

packet = Packet_descriptor(
WRITE, start, count);

try {

packet.alloc_packet(
block_size * count);

if(ready_to_submit()){
submit (packet);

}
catch (Alloc_Error) { }



Gneliss Block Client
Formalizing properties

m Define packet type

= NoO exceptions, allocation
success is a property

m Define precondition from
formalized properties

= Packet must be allocated
= And the platform must be ready

2020-02-02

m) Componolit

Secure Systems Engineering

type Packet 1s record

Start : Natural;
Length : Positive;
op : Operation;

Allocated : Boolean;
end record;

function Ready return Boolean;
procedure Submit (P : Packet)
with
Pre => P.Allocated
and then Ready;



Gneliss Block Client
Formalizing properties

m Packet properties can be
changed by the programmer

= Allocation status can be set
without actually successfully
allocating

= Packet can be submitted multiple
times

m Submit does not change the
platform state

= Calling Submit should invalidate
Ready

2020-02-02

m) Componolit

Secure Systems Engineering

P := Packet’(Start => 0,
Length => 1,
op => READ,

Allocated => True);
if P.Allocated and then Ready
then

Submit (P);
Submit (P);
end if;

10



Gneliss Block Client
Formalizing properties

m Use state enum instead of
boolean

m Encapsulate Packet type

= Can only be changed by platform
calls

= Can only be created Iin state
Empty

= Cannot be copied (11imited)

2020-02-02

m) Componolit

Secure Systems Engineering

type Packet 1is limited private;

type Packet_State is
(Empty, Allocated);

function Create

(Start : Natural,;
Length : Positive;
op : Operation)

return Packet

with

Post => State (Create’Result) =

Empty;

function State (P : Packet)
return Packet_State;

11



Gneliss Block Client
Formalizing properties

m Submit changes packet state
m Submit changes platform state

= Ready depends on platform
state

= Once Submit is called, Ready
must be checked again

2020-02-02

m) Componolit

Secure Systems Engineering

function Ready return Boolean
with
Global => (Input => Platform);

procedure Submit
(P : in out Packet)
with
Pre => State (P) = Allocated
and then Ready,
Post => State (P) = Empty,
Global => (In_Out => Platform);

12



Gneiss Block Client O ComPOUOI.lt
A Second Platform Secure Systems Engineering

m write might fail

= ENOSYS (not implemented) struct block_packet packet =
= EINVAL (wrong argument) {0, 1, WRITE, 0};

| int result;
= EFBIG (offset out of file) packet .ptr = malloc

= EBADF (bad file descriptor) (block_size * packet.len);
= EAGAIN (out of resources) if(packet.ptr){
i result = write(fd, &packet);
® No way to make sure it 1
succeeds, submit must be able
to fail, too

2020-02-02



Gnelss Block Client
A Second Platform

m Submit must be able to fall

= |t might change the packet state
or leave itas is

= An unsuccessfully submitted
packet can be submitted again

2020-02-02

6 Componolit

Secure Systems Engineering

procedure Submit
(P : in out Packet)
with
Pre =>
State (P) = Allocated,
Post =>
State (P) in
Empty | Allocated,

Global => (In_Out => Platform);

14



Gnelss Block Client
Adapting the first platform

m Both platforms have different
semantics

m The second platform cannot be
expressed with the first one

m But the first one can be expressed
with the second one

2020-02-02

m) Componolit

Secure Systems Engineering

procedure Submit
(P : 1n out Packet)
1s
begin
1f Ready then
Submit_Native (P);
end if;
end Submit;

15



Gnelss
Summary

m Asynchronous, event based
B Supports capabilities
m Callbacks via generics

m Limited dynamic resource
allocation

= Platform dependent
® No memory pressure
m No aliasing

2020-02-02

m) Componolit

Secure Systems Engineering

m Multiple platforms
= Genode
= Linux
= Muen
m Interfaces
= Log client/server
Block client/server

Timer client

Message client/server

Shared memory

16



m) Componolit

QueS t ionS? Secure Systems Engineering

Johannes Kliemann
kliemann@componolit.com

@Componolit - componolit.com - github.com/Componolit

2020-02-02



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

