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Component -based Architectures
Trusted Components

m Can’t reimplement everything
m Solution: software reuse
= Untrusted software (gray)
= Policy object (green)
= Client software (orange)
m Policy and proxy components
= Formally verified
= Limited complexity
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Protocol validator

(e.g. TLS)
B =
Network Web
Stack browser
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Ensuring Correctness

Prerequisites
m Correctness by proof m Reusability

= Absence of runtime errors = Proofs require effort

= Functional correcthess = Abstraction from actual platform
m Tools m Provability

=« Formalization language = Formal specification

= Mapping between = Manageable complexity

implementation and proof = Deterministic behaviour
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Correctness by Proof and Tools

SPARK

® Programming Language
= Based on Ada
= Compilable with GCC and LLVM
= Customizable runtime

= Contracts (preconditions,
postconditions, invariants)

m Verification Toolset
= Absence of runtime errors
= Functional correctness
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function Abs (I :
return Integer
with
Pre => I > Integer’First,
Post => Abs’Result >= 0;

Integer)

procedure Inc
(I : in out Integer)

with
Pre => I < Integer’Last,
Post => I =101ld + 1,
Global => null;
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Provability and Reusability

Gneiss
m Reusability m Provability
= Platform abstraction = Platform formalization
= Interface mappable to multiple = Assumptions coarse enough to
different semantics be valid on multiple platforms
= Only dependencies satisfiable by = Assumptions strong enough to
all platforms ease proving
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Example: Block Client
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Block Devices
Client Interface

m Block device

= Storage device of equally sized
blocks

= Block size is typically 512 or
4096 bytes

m Packet descriptor
= Starting block number
= Amount of blocks
= Read/Write/Sync/Trim
= Memory location
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m Create packet descriptor

m Allocate memory for request

m (write data)

B Send request to block device

B Receive answer from block device
m (read data)



Gneliss Block Client
Formalizing properties

m Formalize properties of platform
API
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Packet object is needed
Packet object can always be
initialized

Request memory must be
allocated separately
Memory allocation might fail
Submitting must be checked

Submitting works always if ready
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packet = Packet_descriptor(
WRITE, start, count);

try {

packet.alloc_packet(
block_size * count);

if(ready_to_submit()){
submit (packet);

}
catch (Alloc_Error) { }



Gneliss Block Client
Formalizing properties

m Define packet type

= NoO exceptions, allocation
success is a property

m Define precondition from
formalized properties

= Packet must be allocated
= And the platform must be ready
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type Packet 1s record

Start : Natural;
Length : Positive;
op : Operation;

Allocated : Boolean;
end record;

function Ready return Boolean;
procedure Submit (P : Packet)
with
Pre => P.Allocated
and then Ready;



Gneliss Block Client
Formalizing properties

m Packet properties can be
changed by the programmer

= Allocation status can be set
without actually successfully
allocating

= Packet can be submitted multiple
times

m Submit does not change the
platform state

= Calling Submit should invalidate
Ready
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P := Packet’(Start => 0,
Length => 1,
op => READ,

Allocated => True);
if P.Allocated and then Ready
then

Submit (P);
Submit (P);
end if;
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Gneliss Block Client
Formalizing properties

m Use state enum instead of
boolean

m Encapsulate Packet type

= Can only be changed by platform
calls

= Can only be created Iin state
Empty

= Cannot be copied (11imited)
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type Packet 1is limited private;

type Packet_State is
(Empty, Allocated);

function Create

(Start : Natural,;
Length : Positive;
op : Operation)

return Packet

with

Post => State (Create’Result) =

Empty;

function State (P : Packet)
return Packet_State;
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Gneliss Block Client
Formalizing properties

m Submit changes packet state
m Submit changes platform state

= Ready depends on platform
state

= Once Submit is called, Ready
must be checked again

2020-02-02

m) Componolit

Secure Systems Engineering

function Ready return Boolean
with
Global => (Input => Platform);

procedure Submit
(P : in out Packet)
with
Pre => State (P) = Allocated
and then Ready,
Post => State (P) = Empty,
Global => (In_Out => Platform);
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m write might fail

= ENOSYS (not implemented) struct block_packet packet =
= EINVAL (wrong argument) {0, 1, WRITE, 0};

| int result;
= EFBIG (offset out of file) packet .ptr = malloc

= EBADF (bad file descriptor) (block_size * packet.len);
= EAGAIN (out of resources) if(packet.ptr){
i result = write(fd, &packet);
® No way to make sure it 1
succeeds, submit must be able
to fail, too
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Gnelss Block Client
A Second Platform

m Submit must be able to fall

= |t might change the packet state
or leave itas is

= An unsuccessfully submitted
packet can be submitted again
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procedure Submit
(P : in out Packet)
with
Pre =>
State (P) = Allocated,
Post =>
State (P) in
Empty | Allocated,

Global => (In_Out => Platform);
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Gnelss Block Client
Adapting the first platform

m Both platforms have different
semantics

m The second platform cannot be
expressed with the first one

m But the first one can be expressed
with the second one
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procedure Submit
(P : 1n out Packet)
1s
begin
1f Ready then
Submit_Native (P);
end if;
end Submit;
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Gnelss
Summary

m Asynchronous, event based
B Supports capabilities
m Callbacks via generics

m Limited dynamic resource
allocation

= Platform dependent
® No memory pressure
m No aliasing
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m Multiple platforms
= Genode
= Linux
= Muen
m Interfaces
= Log client/server
Block client/server

Timer client

Message client/server

Shared memory
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