
Gneiss
A nice component framework in SPARK

Johannes Kliemann
FOSDEM, Brussels, 2020-02-02

2020-02-02 2

Component-based Architectures
Trusted Components

■ Can’t reimplement everything

■ Solution: software reuse

▪ Untrusted software (gray)

▪ Policy object (green)

▪ Client software (orange)

■ Policy and proxy components

▪ Formally verified

▪ Limited complexity

Network

Stack

Web

browser

Protocol validator

(e.g. TLS)

2020-02-02 3

Ensuring Correctness
Prerequisites

■ Correctness by proof

▪ Absence of runtime errors

▪ Functional correctness

■ Tools

▪ Formalization language

▪ Mapping between
implementation and proof

■ Reusability

▪ Proofs require effort

▪ Abstraction from actual platform

■ Provability

▪ Formal specification

▪ Manageable complexity

▪ Deterministic behaviour

2020-02-02 4

Correctness by Proof and Tools
SPARK

■ Programming Language

▪ Based on Ada

▪ Compilable with GCC and LLVM

▪ Customizable runtime

▪ Contracts (preconditions,
postconditions, invariants)

■ Verification Toolset

▪ Absence of runtime errors

▪ Functional correctness

function Abs (I : Integer)
 return Integer
with
 Pre => I > Integer’First,
 Post => Abs’Result >= 0;

procedure Inc
 (I : in out Integer)
with
 Pre => I < Integer’Last,
 Post => I = I’Old + 1,
 Global => null;

2020-02-02 5

Provability and Reusability
Gneiss

■ Reusability

▪ Platform abstraction

▪ Interface mappable to multiple
different semantics

▪ Only dependencies satisfiable by
all platforms

■ Provability

▪ Platform formalization

▪ Assumptions coarse enough to
be valid on multiple platforms

▪ Assumptions strong enough to
ease proving

2020-02-02 6

Example: Block Client

2020-02-02 7

Block Devices
Client Interface

■ Block device

▪ Storage device of equally sized
blocks

▪ Block size is typically 512 or
4096 bytes

■ Packet descriptor

▪ Starting block number

▪ Amount of blocks

▪ Read/Write/Sync/Trim

▪ Memory location

■ Create packet descriptor

■ Allocate memory for request

■ (write data)

■ Send request to block device

■ Receive answer from block device

■ (read data)

2020-02-02 8

Gneiss Block Client
Formalizing properties

■ Formalize properties of platform
API

▪ Packet object is needed

▪ Packet object can always be
initialized

▪ Request memory must be
allocated separately

▪ Memory allocation might fail

▪ Submitting must be checked

▪ Submitting works always if ready

packet = Packet_descriptor(
 WRITE, start, count);

try {

 packet.alloc_packet(
 block_size * count);

 if(ready_to_submit()){
 submit(packet);
}

catch (Alloc_Error) { }

2020-02-02 9

Gneiss Block Client
Formalizing properties

■ Define packet type

▪ No exceptions, allocation
success is a property

■ Define precondition from
formalized properties

▪ Packet must be allocated

▪ And the platform must be ready

type Packet is record
 Start : Natural;
 Length : Positive;
 Op : Operation;
 Allocated : Boolean;
end record;

function Ready return Boolean;

procedure Submit (P : Packet)
with
 Pre => P.Allocated
 and then Ready;

2020-02-02 10

Gneiss Block Client
Formalizing properties

■ Packet properties can be
changed by the programmer

▪ Allocation status can be set
without actually successfully
allocating

▪ Packet can be submitted multiple
times

■ Submit does not change the
platform state

▪ Calling Submit should invalidate
Ready

P := Packet’(Start => 0,
 Length => 1,
 Op => READ,
 Allocated => True);
if P.Allocated and then Ready
then
 Submit (P);
 Submit (P);
end if;

2020-02-02 11

Gneiss Block Client
Formalizing properties

■ Use state enum instead of
boolean

■ Encapsulate Packet type

▪ Can only be changed by platform
calls

▪ Can only be created in state
Empty

▪ Cannot be copied (limited)

type Packet is limited private;

type Packet_State is
 (Empty, Allocated);

function Create
 (Start : Natural;
 Length : Positive;
 Op : Operation)
 return Packet
with
 Post => State (Create’Result) =
 Empty;

function State (P : Packet)
 return Packet_State;

2020-02-02 12

Gneiss Block Client
Formalizing properties

■ Submit changes packet state

■ Submit changes platform state

▪ Ready depends on platform
state

▪ Once Submit is called, Ready
must be checked again

function Ready return Boolean
with
 Global => (Input => Platform);

procedure Submit
 (P : in out Packet)
with
 Pre => State (P) = Allocated
 and then Ready,
 Post => State (P) = Empty,
 Global => (In_Out => Platform);

2020-02-02 13

Gneiss Block Client
A Second Platform

■ write might fail

▪ ENOSYS (not implemented)

▪ EINVAL (wrong argument)

▪ EFBIG (offset out of file)

▪ EBADF (bad file descriptor)

▪ EAGAIN (out of resources)

■ No way to make sure it
succeeds, submit must be able
to fail, too

struct block_packet packet =
 {0, 1, WRITE, 0};
int result;

packet.ptr = malloc
 (block_size * packet.len);

if(packet.ptr){
 result = write(fd, &packet);
}

2020-02-02 14

Gneiss Block Client
A Second Platform

■ Submit must be able to fail

▪ It might change the packet state
or leave it as is

▪ An unsuccessfully submitted
packet can be submitted again

procedure Submit
 (P : in out Packet)
with
 Pre =>
 State (P) = Allocated,
 Post =>
 State (P) in
 Empty | Allocated,
 Global => (In_Out => Platform);

2020-02-02 15

Gneiss Block Client
Adapting the first platform

■ Both platforms have different
semantics

■ The second platform cannot be
expressed with the first one

■ But the first one can be expressed
with the second one

procedure Submit
 (P : in out Packet)
is
begin
 if Ready then
 Submit_Native (P);
 end if;
end Submit;

2020-02-02 16

Gneiss
Summary

■ Asynchronous, event based

■ Supports capabilities

■ Callbacks via generics

■ Limited dynamic resource
allocation

▪ Platform dependent

■ No memory pressure

■ No aliasing

■ Multiple platforms

▪ Genode

▪ Linux

▪ Muen

■ Interfaces

▪ Log client/server

▪ Block client/server

▪ Timer client

▪ Message client/server

▪ Shared memory

2020-02-02 17

Questions?

Johannes Kliemann
kliemann@componolit.com

@Componolit · componolit.com · github.com/Componolit

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

