Correlation analysis in automated testing

FOSDEM 2020

Łukasz Wcisło

- Introduction
- Purpose
- Function definition & deviations
- Covariance matrix
- Pearson correlation coefficient
- Correlation Matrix
- Use-case

Science may be described as the art of systematic oversimplification — the art of discerning what we may with advantage omit.

Karl Popper

- Simplicity
- Time saving
- Logic
- Elegance

Test result as a Boolean function, a relation between a release version and a result of a test.

Red - FAIL

Green - PASS

Instead of using expected value, we can use the probability.

$$\Sigma = egin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1n} \ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2n} \ dots & \cdots & \ddots & dots \ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_n^2 \end{bmatrix}$$

Where

$$\sigma_i^2 = D^2 X_i$$

is a variance of variable x, and

$$\sigma_{ij} = \operatorname{cov}(X_i, X_j)$$

is a covariance between two standardized random variables.

(In our case - between two tests)

Covariance Matrix									
	3	4	5	9	12	16	20	23	25
3	0.0625	0.175	-0.05	-0.05	-0.05	-0.05	0.125	-0.05	0.01
4	0.175	0.0612562	0.18	0.025	0.03	0.025	0.2025	0.035	0.135
5	0.1	0.18	0.0576	0	0.09	0	0.22	0.08	0.18
9	-0.05	0.025	0	0.0625	0.05	0.25	0.025	0	0
12	-0.05	0.03	0.09	0.05	0.0576	0.05	0.07	0.18	0.08
16	-0.05	0.025	0	0.25	0.05	0.0625	0.025	0	0
20	0.125	0.2025	0.22	0.025	0.07	0.025	0.0612562	0.065	0.165
23	-0.05	0.035	0.08	0	0.18	0	0.065	0.0441	0.06
25	0.1	0.135	0.18	0	0.08	0	0.165	0.06	0.0441

We can extract meaningful tests for better performance. Diagonal contains variance of each test, covariance matrix is symmetric. Also, every covariance matrix is positive semi-definite.

Pearson correlation coefficient

What brings us to Pearson correlation coefficient.

It is a covariance of two variables divided by the product of their standard deviations:

$$r_{XY} = rac{ ext{cov}(X,Y)}{\sigma_X \sigma_Y} = rac{\left(\sum_{i=1}^n \sum_{j=1}^m P(X=x_i,Y=y_j) x_i y_j
ight) - \overline{X} \; \overline{Y}}{\sqrt{\left(\sum_{i=1}^n P(X=x_i) x_i^2
ight) - \overline{X}^2} \sqrt{\left(\sum_{i=1}^m P(Y=y_i) y_i^2
ight) - \overline{Y}^2}}$$

Where correlation is normalized and always stays between -1 and 1.

Mean of x, of y, variance of x, of y, correlation between x and y, linear regression and coefficient of determination of the linear regression are the same for each data set.

- 1. A. Buda and A.Jarynowski (2010) Life-time of correlations and its applications vol.1, Wydawnictwo Niezależne: 5–21, December 2010, ISBN 978-83-915272-9-0
- 2. W.J. Krzanowski: Principles of Multivariate Analysis. Nowy Jork: Oxford University Press, 2003, seria: Oxford Statistical Science. ISBN 0-19-850708-9.
- 3. Cox, D.R., Hinkley, D.V. (1974) Theoretical Statistics, Chapman & Hall (Appendix 3) ISBN 0-412-12420-3
- 4. Anscombe, F. J. (1973). "Graphs in Statistical Analysis". American Statistician. 27 (1): 17–21. doi:10.1080/00031305.1973.10478966

Q & A

Thank you for your attention

"There are three kinds of lies: lies, damned lies, and statistics."

Benjamin Disraeli