Threat modelling
for developers
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Are we doomed?






“Building security in”
“Security by design”

“Shifting security left”
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“Ifwe ... could do only one thing
to improve software security ...
we would do threat modelling
every day of the week. ”

— Howard & Lipner



threat modelling



Requirements engineering
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What’s your threat model?



On the Security of Public Key Protocols

DANNY DOLEV anp ANDREW C. YAQ, MEMBER, 1EEE

Abstract—Recently the use of public key encryption to provide secure
network communication has received considerable attention. Such public
key systems are usually effective against passive eavesdroppers, who merely
tap the lines and try to decipher the message. It has been pointed out,
however, that an improperly designed protocol could be vulnerable to an
active saboteur, one who may impersonate another user or alter the
message being transmitted. Several models are formulated in which the
security of protocols can be discussed precisely. Algorithms and characteri-
zations that can be used to determine protocol security in these models are
given,

I. INTRODUCTION

HE USE of public key encryption [1], [11] to provide

secure network communication has received consider-
able attention [2], [7], [8], [10). Such public key systems are
usually very effective against a “passive” eavesdropper,
namely, one who merely taps the communication line and
tries to decipher the intercepted message. However, as
pointed out in Needham and Schroeder [8)], an improperly
designed protocol could be vulnerable to an “active”
saboteur, one who may impersonate another user and may
alter or replay the message. As a protocol might be com-
promised in a complex way, informal arguments that assert
the security for a protocol are prone to errors. It is thus
desirable to have a formal model in which the security
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issues can be discussed precisely. The models we introduce
will enable us to study the security problem for families of
protocols, with very few assumptions on the behavior of
the saboteur.

We briefly recall the essence of public key encryption
(see [1], [11] for more information). In a public key system,
every user X has an encryption function E, and a decryption
function D_, both are mappings from {0, 1}* (the set of all
finite binary sequences) into {0, 1)*. A secure public direc-
tory contains all the (X, E,) pairs, while the decryption
function D, is known only to user X. The main require-
ments on E_, D_ are:

1) ED.=DE =1, and
2) knowing E (M) and the public directory does not
reveal anything about the value M.

Thus everyone can send X a message E (M), X will be
able to decode it by forming D ( E.(M)) = M, but nobody
other than X will be able to find M even if E (M) is
available to them.

We will be interested mainly in protocols for transmit-
ting a secret plaintext M between two users. To give an
idea of the way a saboteur may break a system, we
consider a few examples. A message sent between parties in
the network consists of three fields: the sender’s name, the
receiver’s name, and the text. The text is the encrypted part
of the message. We will write a message in the format:
sender’s name, text, receiver’s name,
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“ More precisely, we will assume
the following about a saboteur:”

— obtain any message
— initiate any conversation
— be areceiver to any user









Threat Model

Eleanor Saitta



What could
possibly
go wrong?



What could
possibly
go wrong?



Types of threat modelling

— Attacker-centric
— Asset-centric
— System-centric






Initial Foothold:

Action on Objectives:

Compromised System Pivoting / Critical Asset Access
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This action does not apply to this asset, based on the asset's type in the Data
Model tab.

B (Never) The system should never let this actor take this action on this asset.
(Conditionally) The system should let this actor take this action on this asset |
when certain conditions (typically documented in the cell comment) are met.

(Always) The system should always let this actor take this action on this asset.
Example:

cC "R
u "Iiop *

Actor
“lAuthor Editor Reader

u
|




STRUCTURE

ST
SAACE ANV
SERVICES
SKIN

SITE




Virtuali
W13ed GNU/Linux

Host




Popular approaches
( system-centric )

— STRIDE
— Trike
— PASTA



Relevant questions

N ow N R

What are we working on?

. What can go wrong?
. What are we going to do?
. Did we do a good job?



Lightweight methodology
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Draw data tflows

. Elicit threats
. Ranking + controls
. Check your work



1. Draw data tlows
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2. Elicit threats
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Information disclosure
Tampering
Denial of service

Spoofing
Elevation of privilege
Repudiation



“STRIDE”
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3. Ranking + controls
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Risk = likelihood x impact
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4. Check your work



“All models are wrong,
some models are useful.”

— (George Box
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“T WoH THESE PARTS
COULD COMMUNICATE
MORE. EASILY"

“0OH, THIS NEW TECHNOLOGY
MPKES IT EASY TO ENCLOSE
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Lightweight methodology
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Draw data tflows

. Elicit threats
. Ranking + controls
. Check your work
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The correct amount of laundry The washing machine is _The smartphone and the washing

detergent is calculated based on connected to Wi-Fi, allowing it machine are connected via the cloud.
the size of the load detected by to be controlled remotely by a Both the status of the washing machine
the sensors. smartphone and its instructions are transmitted via

the cloud, which is managed by the app
provider (usually the manufacturer of
the washing machine).

N
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" Access to the cloud can be

1 regulated by the manager of
the cloud service, but may also
@F be outsourced to other parties
- it may be possible to log in
( 1 using a Google or Facebook
/f/_-ﬁ account, for example.

A smartphone app enables the washing
machine to be turned on and off (with an
optional timer). Users can also select their

The washing machine has sensors that can own programmes. Apps are provided by the
measure the size and type of the load. Using manufacturer of the washing machine, but
this information, it determines the most can also be developed and supplied by

suitable washing programme. other parties.



What could
possibly
go wrong?
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