Threat modelling
for developers

OUR ENTIRE FIELD IS BAD

I DONT QUITE KNOW HOW To PUT THIS, BUT
AND IF YOU RELY ON US, EVERYONE WILL DIE.

ASKING AIRCRAFT DESIGNERS | | ASKING BUILDING ENGINEERS | - ASKING SOFTWARE
ABOUT AIRPLANE SAFETY: ABOUT ELEVATOR SAFETY: ENGINEERS ABOUT
NOTHING 15 EVER FOOLPROOF | ELEVATORS ARE PROTECTED By | LCOMPUTERIZED VOTING:
BUT MODERN AIRLINERS ARE. | MULTIPLE. TRIED-AND-TESTED

INCREDIBLY RESILIENT, FLYING IS | FAILSAFE MECHANISMS. HEYRE | THATS TERRIFVING.
THE SAFEST WAY O TRAVEL. | NEARLY INCAPABLE OF FALLING. {

VAT, REALLY? THEY SAY THEY'VE FIXED IT LITH
DON'T TRUST \OTING SOFTWARE. AND DON'T SOMETHING CALLED "BLOCKCHAIN!
LISTEN TO ANYONE WHO TELLS YOU ITS SAFE. AAAAA!IT

\JHY? WJHATEVER THEY SOLD

YOU, DON'T TOUCH rr

AT WHAT WE DO,

BUR?’TTIMTI'EDESERT

P

UEPRGLUJES

Safety
VS
Security

& e TR T
L o

W e e

Are we doomed?

“Building security in”
“Security by design”

“Shifting security left”

Flanning

Design
Review

One-Time
Requirements

Response
Planning

Response
Planning

SJU
9
wa—i!nba}j unas”

Reqguirements Design Implementation Verification (Beta) Release RTM Response

™ i ™~ A
AN A AN i AN A AN
0 /A 0 /A 0! /A 1!
| Lo | hoo | Lo |
I | | I |1 | |l |
| | I I
| = |l | = || - || -
Inception | | Guidelines & Best Practices | | Final Security Review (FSR) | | Security Responss Fesdback
-Security advisar assigned | -Coding and test standards | -Threat models reviewed | -Tools/processes evaluated
-Ensure security milestones | | followed | l -Unfixed bugs reviewed | | -Postmortems compleled
undarstood | -Test plans devalopad and | -New bugs reviewsd (postmartam) |
-ldentify security requirements | | executed (including fuzz | | -Penetration testing completed | |
| tesling) | -Documeniation archived |
| —_ -Tools used (Code analysis) I —_— I—-
Design & Threat Modeling Securily Push RTM & Deployment
-Dagign guldslines documantad -Thraat madals raviawad -Signoff by sacurity taam
-Threat models produced -Code reviewed
-Security architecture documented =Altack tesling
-Threat model and design review -New threats evaluated
compleled -Securily lesting completed

-Ship eriteria agraad to

m Requirements m Implementation > Verification Release >

Establish Security Establish Design Use Approved Dynamic Inciderrt |
Requirements Requirements Tools Analysis Response Plan

CoreSecurity Craate Quality Analyze Attack Deprecate Unsafe Fuzz Final Sacurity
Training Gates ! Bug Bars Surface Functions Testing Review

Serurity & Privacy Threat Static Attack Surface Relpasa
Risk Assassment Modeling Analysis Review Archive

“Ifwe ... could do only one thing
to improve software security ...
we would do threat modelling
every day of the week. ”

— Howard & Lipner

threat modelling

Requirements engineering
&
Architectural analysis

What’s your threat model?

On the Security of Public Key Protocols

DANNY DOLEV anp ANDREW C. YAQ, MEMBER, 1EEE

Abstract—Recently the use of public key encryption to provide secure
network communication has received considerable attention. Such public
key systems are usually effective against passive eavesdroppers, who merely
tap the lines and try to decipher the message. It has been pointed out,
however, that an improperly designed protocol could be vulnerable to an
active saboteur, one who may impersonate another user or alter the
message being transmitted. Several models are formulated in which the
security of protocols can be discussed precisely. Algorithms and characteri-
zations that can be used to determine protocol security in these models are
given,

I. INTRODUCTION

HE USE of public key encryption [1], [11] to provide

secure network communication has received consider-
able attention [2], [7], [8], [10). Such public key systems are
usually very effective against a “passive” eavesdropper,
namely, one who merely taps the communication line and
tries to decipher the intercepted message. However, as
pointed out in Needham and Schroeder [8)], an improperly
designed protocol could be vulnerable to an “active”
saboteur, one who may impersonate another user and may
alter or replay the message. As a protocol might be com-
promised in a complex way, informal arguments that assert
the security for a protocol are prone to errors. It is thus
desirable to have a formal model in which the security

Manuseript received July 15, 1981; revised August 8, 1982. This work
was supported in part by ARPA under Grant MDA-903-80-C-102 and by
National Science Foundation under Grant MCS-77-05313-A01. This paper
was partially presented at the 22nd Annual [EEE Symposium on Founda-

P T T L LT = O - U T e N T e -

issues can be discussed precisely. The models we introduce
will enable us to study the security problem for families of
protocols, with very few assumptions on the behavior of
the saboteur.

We briefly recall the essence of public key encryption
(see [1], [11] for more information). In a public key system,
every user X has an encryption function E, and a decryption
function D_, both are mappings from {0, 1}* (the set of all
finite binary sequences) into {0, 1)*. A secure public direc-
tory contains all the (X, E,) pairs, while the decryption
function D, is known only to user X. The main require-
ments on E_, D_ are:

1) ED.=DE =1, and
2) knowing E (M) and the public directory does not
reveal anything about the value M.

Thus everyone can send X a message E (M), X will be
able to decode it by forming D (E.(M)) = M, but nobody
other than X will be able to find M even if E (M) is
available to them.

We will be interested mainly in protocols for transmit-
ting a secret plaintext M between two users. To give an
idea of the way a saboteur may break a system, we
consider a few examples. A message sent between parties in
the network consists of three fields: the sender’s name, the
receiver’s name, and the text. The text is the encrypted part
of the message. We will write a message in the format:
sender’s name, text, receiver’s name,

G g g e S e ol e g s e S

“ More precisely, we will assume
the following about a saboteur:”

— obtain any message
— initiate any conversation
— be areceiver to any user

Threat Model

Eleanor Saitta

What could
possibly
go wrong?

What could
possibly
go wrong?

Types of threat modelling

— Attacker-centric
— Asset-centric
— System-centric

Initial Foothold:

Action on Objectives:

Compromised System Pivoting / Critical Asset Access
d N\
- * Reconnaissance ¢ Discovery e Collection
¢ Weaponization * Privilege Escalation » Exfiltration
e Delivery e Execution » Target Manipulation
* Social Engineering * Credential Access * Objectives
* Exploitation * Lateral Movement
¢ Persistence
* Defense Evasion
e Command & Control

o o /) \ v

This action does not apply to this asset, based on the asset's type in the Data
Model tab.

B (Never) The system should never let this actor take this action on this asset.
(Conditionally) The system should let this actor take this action on this asset |
when certain conditions (typically documented in the cell comment) are met.

(Always) The system should always let this actor take this action on this asset.
Example:

cC "R
u "Iiop *

Actor
“lAuthor Editor Reader

u
|

STRUCTURE

ST
SAACE ANV
SERVICES
SKIN

SITE

Virtuali
W13ed GNU/Linux

Host

Popular approaches
(system-centric)

— STRIDE
— Trike
— PASTA

Relevant questions

N ow N R

What are we working on?

. What can go wrong?
. What are we going to do?
. Did we do a good job?

Lightweight methodology

N w N R

Draw data tflows

. Elicit threats
. Ranking + controls
. Check your work

1. Draw data tlows

%% EDH!NPEIEF .

ACME HO 2 b

% --_--_'-;'-Parkm g -

Fenced
Perimeter

Backbone

-

4 Remote
Dial-Up
Users

N4

o e e i e

Nemork Servi‘ces .‘

i

Internet
Users

v A
=

ACME ACME
Web Server Firewall

DBA (human)

DB Cluster
Web Clients L L L LI EE LY EELEL LR
Acme SOL Account

Key:

¥ ' | Log analysis

SOL Clients %) 5
i A I
Data Management Logs :
I :

. | Trust

External Entity Process data flow Data Store | Boundary

-+ | i i

........... = ol

' Databass quary Databass

HTTPS request
,,..--""H'_""‘--g

TTP request }

Usar | | Web application
' Database rasponsas
HTTFS responss
L - b Login process -
|:;-g / \ Catabass qua\
Login status Database responze
Uzar : i

Database

Opearation ras|::ll:lnsu %@- ‘H

Operation reques!

Datzbase querny

F. Autherticated
AT e oparations .

Database L

Submit login requast

Rudirect lo HTTPS

Ghack for
/ .

HTTPS connection accepled

Query el esall ol uses

Ratum salt

Catabase
Cuery for usesname with
= calted passwortd
E Salt s valld H
J i Retum Gser recon
Login accapled
: Ghack
= passward
vl sl v
Login taled Invaild passwird
Aroass K
denied :.
Data store
Single pro.

Multiple processes

Extemnal entity

—
flow

Data flow

Trust boundary

Internet

User

External
Attacker

o BGo (0

API Server

kube-

[All kube-api server data

Master Control
Data

3 HTTPS
apiserver \ eted
O Internal N —
nterna N servers
@ Attacker
e Health, Status
= P Checks
T 2
i Health, Status o
Container 4 checks | | E =
B E p .-
3 = 3|
= i Watch for resources - Watch for resources
VWatch for resources on kube-apiserver on kube-apiserver
on kube-apiserver Health, Status |
Checks Fd /
ds +— o
Pe Master Control
Worker Components
@ -_5
5y
i \ kube-
2 ' scheduler
kubelet to pod/CRI runtime, Health, Status
to spin up peds within a host Checks
IPC
RS iptables \\\ >
CCM/KCM
Watch for resources
on kube-apiserver

to setup Host-level ports

kubenet update of iplables}

F(ubenet update of iptables -

to setup all pod networking

2. Elicit threats

Confidentiality
Integrity
Availability

Authentication
Authorisation
Accountability

Information disclosure
Tampering
Denial of service

Spoofing
Elevation of privilege
Repudiation

“STRIDE”

Authorization Provider LDAP

/

!/
Verifies the Privilege ==y
!/
¢ \ferified +

Elevation Of
Privilege

/
/
7 !
! !
/ !
- i oA ; !
B S Generic Trust= =~ ;
I-' ______ Boundary N Tampering With The Data Using
= I The SQL Injection Attack
Generic Trust Verified |
Boundary I
! Auth :
Verification Generic Trust
Boundary

[
|
|
\

== Jser Sends User Credentials
\
Insert Query With Feedback Comments

Browser Client ‘\\ Web Application . SQL Database
\
A

SWIFT
messaging
software

SWIFT

connectivity
software

End-user
computer

Back-office applications
and printers

Customer’s premises

1. Authentication .1 2 Phone # 2a Phone # :
\ Challenge

Login System B “1 Telcointerface

,/ Expected OTT

Roaming Routing

Number routing oh Teleo

o¢ Telco Femtocell Routing

T,
Organization

3. phone #,
oTT

Telco

5. 0TT Customer Effective

Google Voice

(or)
(Non-exclusive)

iMessage

Mobile Phone

3. Ranking + controls

-rf‘-

5

Parker Brothers

Risk = likelihood x impact

Lose bank
license
mm losses

Extra work
for team

Next 100 Tomorrow
years

Elevation of
Privilege

J

[Server]

Local]

Authenticated
Risk level 2

’

\,

Remote]

7

Anonymouse

Risk level 1

\

J

7

Authenticated

Risk level 2

~

|

Client]

|

Local
Risk level 2

=

No User
Interaction
Risk level 1

J

r

User Interaction
Risk level 2

~

4. Check your work

“All models are wrong,
some models are useful.”

— (George Box

mtfoemablon ddydosure.
dato interpreted as tede

rRyourea. laustion /danial
race. tendiRons

canownicalasalion

mSUueycant atess conivol

QLavi ot (is) cmgaumﬁan
wa?:. rro b

predictabila h&’

peor usc.‘a'i\-:ha,.

DOS
against
data flow

Tampering

Corrupt a Incapacitate threats

[Preplay] [message] against
data flow

Consume :
No Weak : Consume o, Falsify
Incapacitate application-
message message : fundamental i control
: : X . endpoints specific
Integrity Integrity resource messages
resources

Spoofing
threats against
external entities/
processes

Denial of
service threats
against
processes

Tampering

threats against

processes

“T WoH THESE PARTS
COULD COMMUNICATE
MORE. EASILY"

“0OH, THIS NEW TECHNOLOGY
MPKES IT EASY TO ENCLOSE
ARBITRARY THINGS IN

SECURE. SANDBOXES!

&,
o

“00H, THIS NEW TECHNOLOGY
MAKES IT EASY TO CREATE
ARBITRARY CONNELCTIONS,
INTEGRATING EVERYTHING!"

&) A

/

“UH-OH, THERE ARE
SO MANY CONNECTIONS
ITS CREATING BUGS
AND SECURITY HOLES!

Lightweight methodology

N w N R

Draw data tflows

. Elicit threats
. Ranking + controls
. Check your work

Juice Shop

juice —— Frontend

Angular]s
Bootstrap C55

Juice Shop
Server Node)s

Service Node|s

[
|
i
|
i
—"""] Payment
|
1

Juice Shop
Frontend

Angular]s
Bootstrap CS5

Juice Shop
Server Node|S

Payment
Service MNode|s

[
|
|
|
i
|
|
[

, L
KAk X
R | o [uice Shop || Juice Shop
juice —— Frontend —»{caryer boda)s
Buyer Angular]S |.1 — Thos! |
59 g 22— Payment
1. Service Wode)s

2

WITH aceess to the public Intemet and
strong technical skills

SO THAT we can profit or make
fmonetary gain

+ A

-To BN A CONTRACT
- Vin THe INTERIET

s
o
de) :
i . :
SRR :_____
<

©
] Awh...
)
2»C Mm .0
.@.v

Q
o @)e
@< D
@ D

Microsoft

secure (SUft\"‘J dre
DEVELOPMENT SERIES

THE SECURITY
'DEVELOPMENT

LIFECYCLE

The correct amount of laundry The washing machine is _The smartphone and the washing

detergent is calculated based on connected to Wi-Fi, allowing it machine are connected via the cloud.
the size of the load detected by to be controlled remotely by a Both the status of the washing machine
the sensors. smartphone and its instructions are transmitted via

the cloud, which is managed by the app
provider (usually the manufacturer of
the washing machine).

N
VS

3 T

.
60| (M Weorws)

" Access to the cloud can be

1 regulated by the manager of
the cloud service, but may also
@F be outsourced to other parties
- it may be possible to log in
(1 using a Google or Facebook
/f/_-ﬁ account, for example.

A smartphone app enables the washing
machine to be turned on and off (with an
optional timer). Users can also select their

The washing machine has sensors that can own programmes. Apps are provided by the
measure the size and type of the load. Using manufacturer of the washing machine, but
this information, it determines the most can also be developed and supplied by

suitable washing programme. other parties.

What could
possibly
go wrong?

Arne Padmos
hello@arnepadmos.com

Hanzehogeschool

Groningen
University of Applied Sciences

OO@ IT Academy
309 Noord-Nederland

github.com
/arnepadmos/resources

my “toy collection”

	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 39
	Slide 40
	Slide 43
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 57
	Slide 58
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 71
	Slide 75
	Slide 76
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101

