A thin arbiter for
glusterfs replication

Ravishankar N. (@itisravi)

Sr.Software Engineer,
February 2", FOSDEM 2020

Agenda

e [he 1-slide intro to glusterfs architecture.
e Synchronous replication and the AFR translator.
e Quorum logic and split-brain prevention.

e [hin Arbiter based replication.

Application

iClient-0 | iClient-1}

Server Server
Brick 1 Brick n

Synchronos replication in gluster
Automatic File Replication (AFR)

- client driven.

- strong consistency model.

- writes follow a 5-step transaction (with optimizations).
- reads served from one of the replicas.

- slowest brick dictates write performance.

- auto self-healing of partial/missed writes.

- CLI to monitor heals and resolve conflicts.

Automatic File Replication - Writes

5 Phase Transaction Model

1. Lock

A 2. Pre-op (set dirty xattr on files)
/ H'\ 3. Actual FOP (write, setfattr etc)

| 4. Post-op (clear dirty, set pending
xattr for failures)

/
.{{f \ll{'r AN

file.txt file.txt file.txt

Replica Volume

Automatic File Replication - Reads

“ “ - -Reads are served from one of the

(good) bricks.

read file2 read file?

/" - which brick” configurable via
policies.

VW

typedef enum {
brlck 1 brle 2 brlck 3 AFR_READ_POLICY_FIRST_UP,
AFR_READ POLICY_ GFID_HASH,

"R D 2
R_READ _ 5

ﬁlel AFR_READ POLICY GFID _PID HASH,

file2 AFR_READ_POLICY LESS LOAD,

file3 ﬁ i

AFR_READ POLICY LEAST LATENCY,
Replica Volume AFR READ POLICY LOAD LATENCY HYBRID,

} afr_read _hash_mode t;

Automatic File Replication - Self-heal

. The self-heal daemon (shd) runs on every node.
. Heals data/metadata/ entries of all volumes on that node.

. GFIDs of files that need heal are stored inside .glusterfs/indices folder
of the bricks.

. Shd crawls this folder every 10 minutes (configurable) and heals
the files.

. Healing takes place under locks for mutual exclusion from client

/0. ;i
sl

Partition

Timeline

AL AL L L L L LA} LA LA LR AL L LN

ATTAAAATAAAAALARLRRLARLRALAAARAI SIS SAS AN NN s R annnnnnnnnnnnn

Automatic File Replication - Replica 3

e o prevent split-brains, we need odd no. of replicas.
e \We can then establish quorum (majority voting).

e [n a(2n+1) replica, clients can continue to work with at most 'n’
replicas going down.

e SO for replica 3, at most 1 brick can be down.

o However, if the only good copy is down, then I/O will fail even if
2 bricks are up.

Vd

Client

/ /1'\

7
/
/
/

Automatic File Replication - Arbiter

N

;
/
/

I{,-
Brick-1

1
|
|
"\‘Ll"

N\

Brick-2

A-rbiter

Stores only namespace,

not the file contents.

Trusted Storage Pool

e Unlike replica 3, arbiter brick stores only
file names. i.e. 0 byte files.

e But since each file also stores the afr
xattrs, quorum logic for preventing
split-brains will work.

e Avalilability is less compared to
replica-3.

11

Replication with Thin Arbiter (TA)

e [A volume = replica 2 volume + lightweight TA process.

[root@ravil ~]# gluster volume info
Client

Volume Name: testvol

Type: Replicate

Volume ID: 2bbbb050-7a70-4431T-8890-a589bbched2f
Status: Started

Snapshot Count: ©

Number of Bricks: 1 x 2 = 2

Transport-type: tcp

Bricks:

Brickl: 10.70.41.242:/bricks/brickl
Brick2: 10.70.41.247:/bricks/brick2 — - -
Thin-arbiter-path: 10.70.43.183:/bricks/brick ta

I
Options Reconfigured: | Brickl Brick 2 |
transport.address-family: inet | |
storage.fips-mode-rchecksum: on | TA Volume V1 |

nfs.disable: on
performance.client-io-threads: off

fesss @ sS———s 2SS S S O S——— E——— - - - Sa——— .-

Trusted Storage Pool

e [he TA process resides on a separate node outside the gluster storage pool.
e [he node is not a peer, i.e. it does not run glusterd (mgmt daemon).

Thin Arbiter process

Replication with Thin Arbiter (TA)

e One TA process can serve multiple volumes of the same™ storage pool.

e |t can also be used across different pools, but the volume names must be unique®.

Trusted Storage Pool -1 Trusted Storage Pool- 2

Client C4
TA Volume V4- (1x 2)
Client C5 TA Volume V5- (2x 2)

Thin Arbiter

*Support for same TA for multiple storage pools to prevent volname collsion is being worked on.

Thin Arbiter process

Thin Arbiter Process

e [he thin arbiter process similar to a normal brick process but has the thin-arbiter xlator in
_ addition to the other server side xlators.

1O stats Xiator e |t stores zero-byte sized ‘replica ID’ files, one for each replica subvolume.

o Eg. For a 2x2 TA volume, there will be 2 files: trusted.afr.testvol-ta-2 and

| trusted.afr.testvol-ta-5

wwmeacsxator | @ | Ne ID file has afr xattrs indicating the good or bad (i.e. pending heals) state of the 2
data bricks of that specific replica.

Server Xlator

Index Xlator

Upcall Xiator

e During the 1st mount of the volume, AFR creates the ID file on TA node.
Locks Xiator e [he job of the thin-arbiter xlator is to allow only create and xattrop FOPs on the ID file.
| e The actual arbitration logic resides on the client side inside AFR.
e |n the default setup, it uses port no 24007 to connect with clients.
o If you decide to start it with a different port no., you need to update the client volfile

l using client.ta-brick-port volume option.

Application
Application

l Write-1 on File-1 Y Write-1= Success

Stores bad brick
in memory.

Write success Write fail

Application
Application Application

1 Write-2 on File-1 1 Write-2= Success

Write success

Write fail

Application
Application Application

1 Write-3 on File-1 Write-2= Failure

Write success
Write fail

Thin Arbiter working - writes

Writes:

e |f write fails on both data bricks for a file, application receives failure. No marking done on TA node.
e |f write fails on brick-2 only, (for say File-1,) mark it as bad on brick-1 and TA.
o on brick-1, it is captured via afr's pending xattr on File-1.
o on TA, it is captured via the afr's pending xattr on the ID file.
e [he client (AFR) also stores in-memory that brick-2 is bad.
e For subsequent writes on any file that fails on brick-2 but succeeds on brick-1, we can return
success to the application without asking or setting anything on the thin-arbiter.
e For writes that fail on brick-1 (irrespective of success/failure on brick-2), we return failure to the app.

IOW, If the write succeeds either on both data bricks or at least on the in-memory good copy, it is
deemed to be successful.

Client connected to both data bricks Client connected to good data brick

Case 3
Client connected to bad data brick

00
\ .\‘{

L0

Thin Arbiter working - reads

Reads:

e |f both data bricks are up, serve the read from a good copy (both can be good).

e If one of the data bricks are down:
o First query the up brick for the file’s afr xattrs. If it blames the down brick, serve the read.
o If it doesn’t, query the TA (‘cause we can't be sure if the down brick blames the up brick).

o If TA doesn’t blame the up brick, serve the read from it.

Of self-heal and domain locks

e SO clients maintain in-memory which brick is bad. But how does it invalidate this info when self heal
heals the bad brick (files)?
o Using upcall + domain locks.
e Locks translator on the brick has a lock-contention notification feature for inodelk/entrylk.
o The current lock owner (client) gets a notification whenever another client requests an
overlapping blocking lock on the same file.
o |t also supports locking the same file by the same client if the lock ‘domain’ is different.
e AFR uses these features to invalidate the in-memory info. During the write’'s post-op phase on the
TA, each client:
o takes a lock on the ID file in a NOTIFY domain as well as a MODIFY domain.
o Marks the bad brick on TA (i.e. sets the afr pending xattrs on the ID file)
o releases only the MODIFY lock.
e S0 each client has one NOTIFY lock still left on the TA node.

domain locks contd.

When shd starts the heal crawl, it attempts a blocking lock on the NOTIFY domain. This triggers an
upcall to all clients.

Clients release their NOTIFY lock held on the ID file on the TA. If the client still has in-flight writes, it
will wait until it is over and then release the NOTIFY lock. It also resets its in-mem info about bad
brick.

shd then inspects the TA file afr xattrs under NOTIFY+MODIFY locks and proceeds with the heal.
During the heal there are no locks from the shd on the TA.

If 1/O fails during heal, client will again mark the bad brick on the TA and update it's in-mem info.
After the heal is over, shd repeats the afr xattr inspection on TA.

If the pre and post xattr value are same, there was no additional failures and shd resets the AFR
xattrs on TA.

If xattr values have changed, there were new failures. So the shd attempts the resetting in the next
crawl.

Installation and usage

e On the TA node: Install server roms and run “setup-thin-arbiter.sh".
o creates and starts the TA process.
O runs as a systemd service - automatically restarted upon crash/ reboot
e Rest of the work flow is normal - peer probe, vol create, vol start, mount and use!
e Create volume syntax:
O gluster volume create S$volname replica 2 thin-arbiter 1 nodel:/brickl
node2:/bricks/brick2 $ta-node:/brick ta
o The data bricks have to be multiples of 2 to create a dist-rep TA volume. TA node and path needs
to be given at the end just once.
e |n k8s, kadalu.io is adding support for TA volumes in gluster: https://github.com/kadalu/rfcs/pull/13

<== Demo Video

https://kadalu.io/
https://docs.google.com/file/d/1HwoZwiUd0elSlSPGcuzOYJVMJLrYYjPR/preview

Things TODO

e Support for add/replace-brick CLI:

o convert existing replica 2/3/arbiter to TA volume.

o replace brick for data-bricks and TA node.
e Make reads aware of in-memory information about bad brick.
e Fix reported bugs. <

Reach out to us!

e Mailing lists:
— gluster-users@aluster.org / gluster-devel

e |RC: #gluster and #gluster-dev on Freenode

e Slack: https://gluster.slack.com

o Links:
— http://gluster.org/
— https://docs.gluster.org/en/latest/
— https://qithub.com/gluster/

luster.or

mailto:gluster-users@gluster.org
mailto:gluster-devel@gluster.org
https://gluster.slack.com
http://gluster.org/
https://docs.gluster.org/en/latest/
https://github.com/gluster/

Questions?

