
A thin arbiter for
glusterfs replication

Ravishankar N. (@itisravi)
Sr.Software Engineer,
February 2nd, FOSDEM 2020

1

Agenda

● The 1-slide intro to glusterfs architecture.

● Synchronous replication and the AFR translator.

● Quorum logic and split-brain prevention.

● Thin Arbiter based replication.

2

Glusterfs Architecture

3

Some keywords:
● Servers
● Bricks
● Peers
● Trusted Storage Pool
● Clients
● Volinfo
● Volume graph
● Translators
● FOP (File operation)
● gfid
● xattrs

Synchronos replication in gluster
Automatic File Replication (AFR)

- client driven.

- strong consistency model.

- writes follow a 5-step transaction (with optimizations).

- reads served from one of the replicas.

- slowest brick dictates write performance.

- auto self-healing of partial/missed writes.

- CLI to monitor heals and resolve conflicts.
4

Automatic File Replication - Writes

1. Lock
2. Pre-op (set dirty xattr on files)
3. Actual FOP (write, setfattr etc)
4. Post-op (clear dirty, set pending

xattr for failures)
5. Unlock

5 Phase Transaction Model

5

Automatic File Replication - Reads

-Reads are served from one of the
(good) bricks.
- which brick? configurable via
policies.

6

typedef enum {
AFR_READ_POLICY_FIRST_UP,
AFR_READ_POLICY_GFID_HASH,
AFR_READ_POLICY_GFID_PID_HASH,
AFR_READ_POLICY_LESS_LOAD,

AFR_READ_POLICY_LEAST_LATENCY,
AFR_READ_POLICY_LOAD_LATENCY_HYBRID,

} afr_read_hash_mode_t;

Automatic File Replication - Self-heal

● The self-heal daemon (shd) runs on every node.
● Heals data/metadata/ entries of all volumes on that node.
● GFIDs of files that need heal are stored inside .glusterfs/indices folder
of the bricks.

● Shd crawls this folder every 10 minutes (configurable) and heals
the files.

● Healing takes place under locks for mutual exclusion from client
I/O.

7

Automatic File Replication - Replica 2
Replica 2 config – prone to split-brains: in time and space.

Split-brain in time Split-brain in space

8

Automatic File Replication - Replica 3

● To prevent split-brains, we need odd no. of replicas.
● We can then establish quorum (majority voting).
● In a (2n+1) replica, clients can continue to work with at most ‘n’

replicas going down.
● So for replica 3, at most 1 brick can be down.

○ However, if the only good copy is down, then I/O will fail even if
2 bricks are up.

9

Automatic File Replication - Replica 3

● Since we have 3 copies of afr xattrs, we can avoid split-brains.
● There must be at least one brick that is not blamed by the others.

10

Automatic File Replication - Arbiter

● Unlike replica 3, arbiter brick stores only
file names. i.e. 0 byte files.

● But since each file also stores the afr
xattrs, quorum logic for preventing
split-brains will work.

● Availability is less compared to
replica-3.

11

Replication with Thin Arbiter (TA)

● TA volume = replica 2 volume + lightweight TA process.

● The TA process resides on a separate node outside the gluster storage pool.
● The node is not a peer, i.e. it does not run glusterd (mgmt daemon).

12

Replication with Thin Arbiter (TA)

● One TA process can serve multiple volumes of the same* storage pool.

● It can also be used across different pools, but the volume names must be unique*.

●

●

●

●

*Support for same TA for multiple storage pools to prevent volname collsion is being worked on.

13

Thin Arbiter process
● The thin arbiter process similar to a normal brick process but has the thin-arbiter xlator in

addition to the other server side xlators.
● It stores zero-byte sized ‘replica ID’ files, one for each replica subvolume.

○ Eg. For a 2x2 TA volume, there will be 2 files: trusted.afr.testvol-ta-2 and
trusted.afr.testvol-ta-5

● The ID file has afr xattrs indicating the good or bad (i.e. pending heals) state of the 2
data bricks of that specific replica.

● During the 1st mount of the volume, AFR creates the ID file on TA node.
● The job of the thin-arbiter xlator is to allow only create and xattrop FOPs on the ID file.
● The actual arbitration logic resides on the client side inside AFR.
● In the default setup, it uses port no 24007 to connect with clients.

○ If you decide to start it with a different port no., you need to update the client volfile
using client.ta-brick-port volume option.

14

Thin Arbiter working - writes

15

Thin Arbiter working - writes

16

Thin Arbiter working - writes

17

Thin Arbiter working - writes

Writes:

● If write fails on both data bricks for a file, application receives failure. No marking done on TA node.
● If write fails on brick-2 only, (for say File-1,) mark it as bad on brick-1 and TA.

○ on brick-1, it is captured via afr’s pending xattr on File-1.
○ on TA, it is captured via the afr’s pending xattr on the ID file.

● The client (AFR) also stores in-memory that brick-2 is bad.
● For subsequent writes on any file that fails on brick-2 but succeeds on brick-1, we can return

success to the application without asking or setting anything on the thin-arbiter.
● For writes that fail on brick-1 (irrespective of success/failure on brick-2), we return failure to the app.

IOW, If the write succeeds either on both data bricks or at least on the in-memory good copy, it is
deemed to be successful.

18

Thin Arbiter working - reads

19

Thin Arbiter working - reads

Reads:

● If both data bricks are up, serve the read from a good copy (both can be good).

● If one of the data bricks are down:

○ First query the up brick for the file’s afr xattrs. If it blames the down brick, serve the read.

○ If it doesn’t, query the TA (‘cause we can’t be sure if the down brick blames the up brick).

○ If TA doesn’t blame the up brick, serve the read from it.

20

Of self-heal and domain locks

● So clients maintain in-memory which brick is bad. But how does it invalidate this info when self heal
heals the bad brick (files)?

○ Using upcall + domain locks.
● Locks translator on the brick has a lock-contention notification feature for inodelk/entrylk.

○ The current lock owner (client) gets a notification whenever another client requests an
overlapping blocking lock on the same file.

○ It also supports locking the same file by the same client if the lock ‘domain’ is different.
● AFR uses these features to invalidate the in-memory info. During the write’s post-op phase on the

TA, each client:
○ takes a lock on the ID file in a NOTIFY domain as well as a MODIFY domain.
○ Marks the bad brick on TA (i.e. sets the afr pending xattrs on the ID file)
○ releases only the MODIFY lock.

● So each client has one NOTIFY lock still left on the TA node.

21

domain locks contd.

● When shd starts the heal crawl, it attempts a blocking lock on the NOTIFY domain. This triggers an
upcall to all clients.

● Clients release their NOTIFY lock held on the ID file on the TA. If the client still has in-flight writes, it
will wait until it is over and then release the NOTIFY lock. It also resets its in-mem info about bad
brick.

● shd then inspects the TA file afr xattrs under NOTIFY+MODIFY locks and proceeds with the heal.
● During the heal there are no locks from the shd on the TA.
● If I/O fails during heal, client will again mark the bad brick on the TA and update it’s in-mem info.
● After the heal is over, shd repeats the afr xattr inspection on TA.
● If the pre and post xattr value are same, there was no additional failures and shd resets the AFR

xattrs on TA.
● If xattr values have changed, there were new failures. So the shd attempts the resetting in the next

crawl.

22

Installation and usage

● On the TA node: Install server rpms and run `setup-thin-arbiter.sh`.
○ creates and starts the TA process.
○ runs as a systemd service - automatically restarted upon crash/ reboot

● Rest of the work flow is normal - peer probe, vol create, vol start, mount and use!
● Create volume syntax:

○ `gluster volume create $volname replica 2 thin-arbiter 1 node1:/brick1
node2:/bricks/brick2 $ta-node:/brick_ta`

○ The data bricks have to be multiples of 2 to create a dist-rep TA volume. TA node and path needs
to be given at the end just once.

● In k8s, kadalu.io is adding support for TA volumes in gluster: https://github.com/kadalu/rfcs/pull/13

23

<== Demo Video

https://kadalu.io/
https://docs.google.com/file/d/1HwoZwiUd0elSlSPGcuzOYJVMJLrYYjPR/preview

Things TODO

● Support for add/replace-brick CLI:
○ convert existing replica 2/3/arbiter to TA volume.
○ replace brick for data-bricks and TA node.

● Make reads aware of in-memory information about bad brick.
● Fix reported bugs. 😉

24

Reach out to us!

● Mailing lists:

−gluster-users@gluster.org / gluster-devel@gluster.org

● IRC: #gluster and #gluster-dev on Freenode

● Slack: https://gluster.slack.com

● Links:

−http://gluster.org/

−https://docs.gluster.org/en/latest/

−https://github.com/gluster/

25

mailto:gluster-users@gluster.org
mailto:gluster-devel@gluster.org
https://gluster.slack.com
http://gluster.org/
https://docs.gluster.org/en/latest/
https://github.com/gluster/

Questions?

Thank you!

26

