sled and rio

Rust DB + io_uring = /(q

sled.rs W @sadisticsystems

who am I

sled.rs

building Rust databases since 2014
previously worked at some social media &
infrastructure companies

for fun, I build and destroy distributed
databases

also for fun, I teach Rust workshops

lol work

W (@sadisticsystems

I li1ke databases because they
often 1nvolve many 1nteresting
englneering techniques

sled.rs W @sadisticsystems

common database techniques

% lock-free programming

% replication, consensus, eventual
consistency
correctness testing

self-tuning systems

R/ / R/
0’0 0’0 0’0

performance work

sled.rs YW @sadisticsystems

I started sled to have a
single project where I could
implement papers I read

W @sadisticsystems

sled acts like a concurrent
BTreeMap that saves data on disk

let db = sled::open(path)?;
db.insert(k, v)?;

db.get (&k)?;

for kv in db.range(k..) {}
db.remove(&k)?;

drop(db);

sled.rs W @sadisticsystems

Rust 1s the best DB language

1. Rust will approach Fortran performance 1n many cases.
C/C++ is really limited by aliasing. More compile-time
info => better optimizations.

2. Correctness. When there's a segfault, I have a very small
set of unsafe blocks to audit to quickly narrow my search
down.

3. Compatibility with the great C/C++ perf/debugging tools

4. I can accept code 1n pull requests with a small fraction
of the mental energy as I would need to put into auditing
C/C++ due to the compiler's strictness

sled.rs YW @sadisticsystems

fast to compile, low friction dev

cbh --features=io_uring
Compiling semver-parser v8.7.8
Compiling f 4
Compiling
Compiling cfg-
Compiling
Compiling
Compiling c
Compiling sma
Compiling
Compiling
Compiling
Compiling
Compiling
Compiling
Compiling
Compiling
Compiling
Compiling DGFFIHQ ln+ _core v@d. 7.k
Compiling
Compiling
Compiling
Compiling sle
Finished s) in 6.91s

sled.rs @sadisticsystems

cargo flamegraph -- --duration=5

Finished release [optimized + debuginfol target(s) in B8.82s

., 132mb

, 148mb
148mb
144mb
144mb

73 fotal ops in 5 seconds. 2811614 ops/s

L] L] 3 " B580
b l | | | l — | [] pagecache profile:
op | min (us) | med (us) | 98 (us) | 99 (us) | 99.9 (us) | 99.99 (us) | max (us) | count | sum (s

tree:
] 1:id: 3.6] 44.9
8.9 27 9 37.4@ 7
| O l e | 3.8 g 9 a 6@9.3 2870
95 551.3

SN
N

WO N~ AN O

|
|
|
|
|
| 4999
|
|
|

® casy to answer

lit = i1d(175/175) parent(1

\ ; ; ” [] I
why 1s this slow? o | ¢ l
snaps| | i3l |
replace | 2 | 37430 |
pull | 1.8 1 188751 |
rewrite | 3.9 1 66 |
[Nal | 8
[[8l
10875

written bgtec
read
e lat

186?8

ass gm’spimluop é‘ﬂﬁﬂ

N NaN NaN NaN 8
res cvar r NaN NaN NaN NaN NaN a @, 6aa
Nal NaN Nal Nal Nal 8 9008

418438
lng res attempts 417727

gment accountant

hold | 7 | .81 a
acquire | .a | | a.
repl | il | Rrl a

| 4 | 7 | a
\ | 4.2 | a.

[perf rpco)d: Pcp+urnd and wrote lu 141 MB
writing flamegraph to "flamegraph.

heavy use of flamegraph crate

——— e ——
T e e, e S 8 .
————————| |
o - -
i

- [stress2”c..

mE .
|IIIIS S S
I..
Illmul
ﬂlll
|
.IS S
|III
— l

IIII
t

| stress2 " rayon_core: :registry::WorkerThread : -

stress2’ _LTcore..iter..adapters..

stress2 " stre..

eSSyt REGST S stress2 ' stress2::main::_$u7b$$u7bsclosure$u7d$$u7ds: :h88859a9c9c8638d8

stress2” _LTstd..panic..AssertUnwindSafe$LT..

stresst_LTstd.. panic..AssertUnwindSafeLTF$GT$$u20asu20$core..ops..function..FnOnce$LT$$LP$SRP$$GT$$GTS: :C..

W (@sadisticsystems

github.com/flamegraph-rs/flamegraph

sled.rs

1 billion operations 1n 57
seconds @ 95% reads / 5%
writes / small working set

sled.rs W @sadisticsystems

seriously though, 1t’s beta

sled.rs W @sadisticsystems

never use a database less tThan
O years old

- s1lte reliability engineering proverb

sled.rs W @sadisticsystems

sled turns 5 thils year, SO
2020 will be an exciliting year
for the project

W @sadisticsystems

let’s see how 1t works!

sled.rs YW @sadisticsystems

sled architecture

lock-free 1ndex loosely based on the Bw-Tree
lock—-free pagecache loosely based on LLAMA

X/ X/ X/
0‘0 0‘0 0‘0

log structured storage loosely based on Sprite
LFS

10 uring on huge buffers for writes

X/
0‘0

> 10 uring functionalility exported as rio crate

X/
0‘0

cache based on W-TinyLFU
> exported (soon!) as berghain crate

sled.rs YW @sadisticsystems

we avolid blocking while
reading and writing

sled.rs W @sadisticsystems

setting a key to a new value

1. traverse tree to find the key’s
leaf

2. modify the leaf to store the new
key-value pailr

sled.rs YW @sadisticsystems

but, we can’t block readers or
writers while updating

sled.rs W @sadisticsystems

sled.rs YW @sadisticsystems

we use a technique called RCU

sled.rs W @sadisticsystems

Read-Copy—-Update (RCU)

1 read the old value through an AtomicPtr

2 make a local copy

3. modify the local copy with the desired changes

z use the compare and swap method to i1nstall the new
version. goto #1 if we fail.

5. use crossbeam epoch to delay garbage collection
until all threads that may have witnessed the old

version are finished

sled.rs YW @sadisticsystems

readers don’t wait for writers

writers procede optimistically

sled.rs W @sadisticsystems

however, we need to also
guarantee that our atomic
operations are saved to disk
1n the same order

sled.rs W @sadisticsystems

buggy solution

1 read 1f the log message 1s
delayed, other threads

2. mutate local may perform their updates
Copy between 3 & 4. 1f the

3 database crashes, it will

. CAS . .
—r— === thread descheduled here load the last item 1in the
4 log to disk log. we have to guarantee

our log order matches our

in-memory order

sled.rs YW @sadisticsystems

data loss

sled.rs YW @sadisticsystems

good solution

sled.rs

read

mutate local copy
reserve log slot
CAS

only fill log
reservation 1f CAS

succeeded

(LLAMA trick)

by ordering our log
reservations between the
read and the CAS, we
guarantee that the order
on-disk will match what
actually happened 1in
memory, without using any

locks.

W (@sadisticsystems

how to de get fast 107
®@ we only write when we have
8mb of data to write
sequentially
® we support out-of-order
wriltes

® 10 uring

W @sadisticsystems

10 uring 1s an 1nterface for
fully asynchronous lilnux
syscalls

sled.rs W @sadisticsystems

the old ATO interface forces
O DIRECT, 1sn’t actually async
sometimes, etc...

W @sadisticsystems

10 uring began as a response
to that, but 1s far more
ambitious

sled.rs W @sadisticsystems

5.1

nop

readv

writev
read_fixed
write fixed
fsync
poll_add
poll_remove

sled.rs

52 5.3
sync_file_range sendmsg

recvmsg

54
timeout

9.5
timeout_remove
accept
async_cancel
link_timeout
connect

5.6
send

recv
fallocate
fadvise
madvise
openat
close

statx

read

write
files_update

W @sadisticsystems

1t’s 2 ring buffers
® submission
® completion

sled.rs W @sadisticsystems

after setup, 1t can be run
with 0 syscalls (SQPOLL)

W @sadisticsystems

10 uring 1s provided via the rio crate

sled.rs

let ring = rio::new().expect("create uring");

let file = std::fs::create("file").expect("openat");
let to write: &[u8] = &[6; 66];

let completion = ring.write at(&file, &to write, at);

// if using threads
completion.wait()?;

// 1if using async
completion.await?

W (@sadisticsystems

sled.rs

use std::{

io::self,

net::{TcpListener, TcpStream},
3

async fn proxy(ring: &rio::Rio, a: &TcpStream, b: &TcpStream) -> io::Result<()> {

let buf = vec![0 u8; 512];

loop {
let read bytes = ring.read at(a, &buf, 0).await?;
let buf = &buf[..read bytes];
ring.write at(b, &buf, 0).await?;

fn main() -> io::Result<()> {
let ring = rio::new()?;
let acceptor = TcpListener::bind("127.0.0.1:6666")7;

extreme: :run(async {
// kernel 5.5 and later support TCP accept
loop {
let stream = ring.accept(&acceptor).await?;
dbg! (proxy(&ring, &stream, &stream).await);

}

W (@sadisticsystems

operations are executed
out—-of-order

sled.rs W @sadisticsystems

chained operations

sled.rs W @sadisticsystems

connect + send + recv

sled.rs W @sadisticsystems

PLs are DSLs for syscalls

sled.rs W @sadisticsystems

10 uring changes this
conversation

sled.rs W @sadisticsystems

over time, BPF may be used to
execute loglc between chained
calls, eqg:
accept -> read -> write

sled.rs W @sadisticsystems

userspace: control plane
kernel: data plane

sled.rs W @sadisticsystems

r10 1S milisuse resistant

sled.rs

guarantees Completion events don’t outlive the ring, the
buffers, or the files involved.

automatically handles submissions

prevents ring overflows that can happen by submitting too
many items

on Drop, the Completion waits for the backing operation
to complete, to guarantee no use—-after-frees.

W (@sadisticsystems

Basically all
performance—-conscious projects
are getting ready to migrate
to 1t, and they are measuring
impressive results.

sled.rs W @sadisticsystems

11 You Retweeted

“Te4 Mark Papadakis
@markpapadakis

Glauber Costa b
@glcst Replying to @Sirupsen and @sadisticsystems

Wondering how are the early results for the

I have been using io_uring for network 10 (need
5.5; subtle bugs in earlier versions), for accept,

io_uring backend for seastar? 50% faster in the readv, writev. Now close to 80% increase in RPS
first benchmark (workload is small 512-byte over non io_uring based alt. Delta even higher
reads with iodepth of one, competing for the higher the load and connections multiplexed.
dispatch time against a CPU-bound constant It's incredible.

Workload) 8:01 AM - Jan 14, 2020 from Geropotamos, Greece - Tweetbot for i0S

8:10 PM - Jan 29, 2020 - Twitter Web App

11 Jens Axboe Retweeted

frevib v

@hielkedv

#10_uring vs #epoll: simple echo server. io_uring
+99% performance, -45% cpu usage. Wow.
@axboe @VincentFree. ““io_uring.”.

sled.rs

0 electrified filth v
@sadisticsystems

for comparison:

* sync using write_all_at/read_exact_at hits
about 2gbps

*jo_uring hitting 6.5gbps reads and 5gbps
writes

(7th gen lenovo x1 carbon laptop w/ LUKS full
disk encryption)

I'm not even using SQPOLL or registered 10
buffers or files yet...

10:51 PM - Jan 3, 2020 - Twitter Web App

W (@sadisticsystems

Try them out :)
docs.rs/rio
docs.rs/sled

sled.rs W @sadisticsystems

Our Results To Date

® pure-rust io uring functionality

® Modified Bw-Tree lock-free architecture (lock-free, log-structured)

¢ Millions of reads + writes per second (1 billion/minute)
¢ Minimal configuration

¢ Multiple keyspace support

® Reactive prefix subscription, replication-friendly

® Merge operators, CRDT-friendly

®@ Serializable transactions

sled.rs YW @sadisticsystems

https://github.com/spacejam/sled/wiki/sled-architectural-outlook

Where We Want To Go

% Support for all io uring operations

% Typed trees: cutting deserialization costs for hot keys
% Replication

* Make 1t more efficient

> sled is currently a bit disk-hungry, we can dramatically improve
this!

% Make it safer! This 1s the main point before 1.0

> SQLite-style formal requirements specification & corresponding

sled.rs testing YW @sadisticsystems

Help Us Get There!

® Sponsorship allows me to focus all of my time on open

source:

¥ Sponsor

0 https://github.com/sponsors/spacejanm

® Want to contribute to a cutting-edge and
industry-relevant DB?

O https://github.com/spacejam/sled

O We love to mentor and teach people about databases!

O Also check out our active discord channel

sled.rs YW @sadisticsystems

https://github.com/sponsors/spacejam
https://github.com/spacejam/sled
https://discord.gg/Z6VsXds

I also run Rust trailnings'!

sled.rs W @sadisticsystems

Thank vyou :)

sled.rs W @sadisticsystems

