
Ron Minnich
Ryan O’Leary
Gan Shun Lim
Prachi Laud
Chris Koch
Ian Goegebuer

With thanks to:
Andres Richter, Rust Embedded WG

In this talk...

1. What is Oreboot?
2. Firmware Challenges
3. Oreboot Design
4. Rust Challenges
5. Targets
6. Getting involved

fig 1. Oreboot developers in their natural habitat

1. What is Oreboot?

Open-Source Firmware Projects
(An incomplete history)

● U-boot (1999-)
● LinuxBIOS (1999-2008)
● Coreboot (2008-)
● NERF (2016-)
● Linuxboot (2017-)
● u-bmc (2018-)
● SlimBoot (2018-) [sort of, it’s a UEFI DXE]

Oreboot = Coreboot - "C"
And much more!

● Downstream fork of coreboot
○ Open-source and GPLv2

● Rust
○ Absolutely no C code.
○ Small pieces of assembly where necessary (ex: initializing stack pointer)
○ Coreboot assembly code is very useful for these tricky bits

● Jump to kernel as quickly as possible
○ Firmware contains no network stack, disk drivers, debug shells, …
○ Those features are provided by payloads such as LinuxBoot

● Strict policy for accepting closed-source blobs
○ Only an issue for the x86 port

● Current RISC-V ports are fully open-source

2. Firmware Challenges

Simple View of Firmware

Three jobs:

1. Initialize hardware (CPU, Buses, Memory, …)
2. Select and run boot media
3. Provide runtime services (optional)

Power On
&

First CPU Instruction
Ready to run YOUR softwarefirmware

Oreboot Bootflow

1. Boot Blob

● Executes directly
from flash

● First instruction
● Initialize CPU
● Debug UART print

“Welcome to
Oreboot”

● Setup SRAM/CAR
● Find and jump to Rom

Stage
● A fair bit of assembly

code

2. Rom Stage

● Executes directly
from flash

● Has very little
~30KiB-8MiB of
SRAM/CAR. Not
enough for Linux yet!

● Initialize RAM

3. Payloader
Stage

● Has one job
● Find, load and run a

payload
● The payloader has no

drivers, storage
drivers, USB stack,
etc… This is a big
complexity reduction
compared to your
classic coreboot.

5. YOUR
Software4. LinuxBoot

● Linux + Initramfs (or
another kernel of your
choosing)

● Kernel (not oreboot)
can optionally load
another kernel from
the disk or network
and kexec

One Second Boot: The Holy Grail

● Firmware bloat epidemic:
○ Consumer laptops/desktops take minutes to boot
○ Servers taking 10+ minutes to boot
○ BMCs taking almost 1 minute to boot, in serial with the host

● Counterpoint:
○ Chromebooks can boot in seconds
○ 2.4Ghz x86 server nodes could boot in seconds in 2004
○ Linux-based automobile computers have held to 800ms since 2006

● Fix pain points:
○ Memory training. This can be cached and is easy to do if reference code is open-source.
○ Run drivers and probe devices concurrently. See coroutines slide.
○ If boot is 1s, need not waste time loading a splash screen, progress bar, video driver, fonts, …
○ Defer all network and disk access to Linux à la LinuxBoot. Decades have gone into optimization

its disk and network drivers.
● Our goal: Boot AST2500 (a BMC) in <1s.

3. Oreboot Design

Driver Model

pub type Result<T> = core::result::Result<T, &'static str>;
pub const EOF: Result<usize> = Err("EOF");
pub const NOT_IMPLEMENTED: Result<usize> = Err("not implemented");

pub trait Driver {
/// Initialize the device.
fn init(&mut self) -> Result<()>;
/// Positional read. Returns number of bytes read.
fn pread(&self, data: &mut [u8], pos: usize) -> Result<usize>;
/// Positional write. Returns number of bytes written.
fn pwrite(&mut self, data: &[u8], pos: usize) -> Result<usize>;
/// Shutdown the device.
fn shutdown(&mut self);

}

string error messages

no cursor

end-of-file returned when reached
the end of a “block device”

for “char devices”, pos doesn’t matter

driver model works without
memory allocation

Example Block Device

pread(&mut buffer, 0) -> 3232 byte
block

32 byte
block

32 byte
block

4 byte block

pread(&mut buffer, 32) -> 32

pread(&mut buffer, 64) -> 32

pread(&mut buffer, 96) -> 4

pread(&mut buffer, 100) -> EOF

32 byte
buffer

100 byte block device

Driver Model

Physical Drivers

Name Description

Memory Reads/writes to physical memory
addresses

PL011 Reads/writes to serial

NS16550 Reads/writes to serial

MMU Control MMU. Making it a driver is
unique to oreboot.

sifive/spi Read from SiFive SPI master

Virtual Drivers

Name Description

Union Writes are duplicated to each
driver in a slice of drivers,
&[&mut dyn Driver]

SliceReader Reads from a slice, &[u8]

SectionReader Reads from a window
(offset&size) of a another Driver.
Returns EOF when the end of
the window is reached.

Example Serial Device
 let mut uarts = [

 &mut NS16550::new(0x1E78_3000, 115200) as &mut dyn Driver, // UART1

 &mut NS16550::new(0x1E78_D000, 115200) as &mut dyn Driver, // UART2

 &mut NS16550::new(0x1E78_E000, 115200) as &mut dyn Driver, // UART3

 &mut NS16550::new(0x1E78_F000, 115200) as &mut dyn Driver, // UART4

 &mut NS16550::new(0x1E78_4000, 115200) as &mut dyn Driver, // UART5

];

 let console = &mut Union::new(&mut uarts[..]);

 console.init();

 console.pwrite(b"Welcome to oreboot\r\n", 0).unwrap();

 let w = &mut print::WriteTo::new(console);

 fmt::write(w, format_args!("{} {}\r\n", "Formatted output:", 7)).unwrap();

Console

UART1

UART2

UART3

UART4

UART5

pwrite

pwrite

● Get printf for free!
● Easy add/remove and configure new drivers.
● Unsafe problem: If two separate modules initialize the same NS16550 driver with the same

mmio address, they will conflict. The driver does not “own” the underlying mmio address.
HELP

WANTED

Flash Layout

● CBFS (coreboot file system) replaced with DTFS
● DTFS = Device Tree File System

○ Can be parsed by existing OSes without any
modification. See /sys/firmware/dt/…

○ Firmware can expose layout of flash chip without any
extra OS code.

○ Easy to parse
○ Self describing
○ Can also be used for:

■ Metadata
■ Splash screens

Boot Blob
500KiB

Fixed DTFS
500KiB

NVRAM A + B
500KiB + 500KiB

RomPayload DTFS A + B
1MiB + 1MiB

RamPayload DTFS A + B
6MiB + 6MiB

Example layout for a 16MiB flash part

��

Fixed DTFS
/dts-v1/;

/ {
 #address-cells = <1>;
 #size-cells = <1>;

 flash-info {
 compatible = "ore-flashinfo";
 board-name = "HiFive Unleashed";
 category = "SiFive";
 board-url =
"https://www.sifive.com/boards/hifive-unleashed";
 areas {
 area@0 {
 description = "Boot Blob and
Ramstage";
 offset = <0x0>;
 size = <0x80000>; // 512KiB
 file =
"target/riscv64imac-unknown-none-elf/debug/boot
blob.bin";
 };

 area@4 {
 description = "Payload C";
 offset = <0xd00000>;
 size = <0x300000>; // 3MiB
 file = "payloadC";
 };
 area@5 {
 description = "Empty Space";
 offset = <0x1000000>;
 size = <0x1000000>; // 16MiB
 };
 };
 };
};

 area@1 {
 description = "Fixed DTFS";
 offset = <0x80000>;
 size = <0x80000>; // 512KiB
 file =
"target/riscv64imac-unknown-none-elf/debug/fix
ed-dtfs.dtb";
 };
 area@2 {
 description = "Payload A";
 offset = <0x100000>;
 size = <0x600000>; // 6MiB
 file = "payloadA";
 };
 area@3 {
 description = "Payload B";
 offset = <0x700000>;
 size = <0x600000>; // 6MiB
 file = "payloadB";
 };

4. Rust Challenges

Source Organization

● README.md
● src/mainboard/opentitan/crb/{Makefile.toml, Cargo.toml}
● src/mainboard/opentitan/crb/src/*.{rs,S}
● src/cpu/lowrisc/ibex/Carbo.toml
● src/cpu/lowrisc/ibex/*.rs
● src/soc/opentitan/src/Cargo.toml
● src/soc/opentitan/src/*.rs
● src/drivers/Cargo.toml
● src/drivers/src/*.rs
● payloads/Cargo.toml
● payloads/src/*.rs
● ...

Contains multiple, conditionally
compiled modules

#[cfg(feature = "ns16550")]
pub mod ns16550;
#[cfg(feature = "pl011")]
pub mod pl011;

cargo-make and user-configuration
● Oreboot has a few post-build steps

○ Build with “cargo make” / Makefile.toml
● Configuration

○ Coreboot uses “make menuconfig” / KConfig
○ No such system for Cargo
○ Currently, oreboot is using conditional compilation / cfg

src/mainboards/ast/ast25x0

src/arch/arm/armv7/bootblob

payload/external/zimage

bootblob.elf

ast25x0.elf

payload.elf

cargo build

cargo build

cargo build

bootblob.bin

ast25x0.bin

ast25x0.binobjcopy

objcopy

objcopy

layoutflash

fixed-dtfs.dts

fixed-dtfs.dtb

oreboot.bin

No dynamic allocation

● No dynamic allocation until memory is initialized
● All memory is stack-allocated
● Want to guarantee that stack size is less than SRAM/CAR (ex: 36KiB) at build time.

○ Use tools such as cargo-call-stack to determine stack size.

HELP
WANTED

HELP
WANTED

HELP
WANTED

HELP
WANTED

HELP
WANTED

HELP
WANTED

HELP
WANTED

HELP
WANTED

Coroutines

● Polling I/O is very slow
○ A few UART prints = 0.01s
○ Read from SPI and verify loop

● Interrupt-based I/O is difficult to do well
○ Puts us on slippery slope to becoming a kernel

● Non-preemptive threading has been shown to be “good enough” in firmware
● Implementation details

○ Save state
○ Long jump
○ (simple) Scheduler -- round robin has been shown to be good enough

● Coreboot had threading and ||ism support off and on over the last 20 years
○ It was always so tricky to use it was usually unused/removed
○ Seems like rust could make this easier and safer

5. Targets

First Target: qemu-system-arm
● -machine virt
● Two day effort (thanks Rust!)
● Memory already initialized
● Device tree is currently hard-coded

QEMU

Memory PL011 UART
Controller

CPU

SPI Controller

-bios oreboot.bin

stdout

DEMO

HELP
WANTED

RUST_TARGET_PATH=$(pwd) cargo make run -p release
HELP

WANTED

https://asciinema.org/a/Ne4Fwa4Wpt95dorEoVnHwiEkP

AST2500 SOC

First Hardware Target: AST2500
● ARM11
● BMC Platform
● Open-source memory initialization code

https://github.com/u-root/u-bmc/blob/master/platfor
m/ast2500/boot/platform_g5.S

○ Converted to .rs with a Go program
● Bootblob

○ 1. Initialize CPU
○ 2. Initialize Bus
○ 3. Initial UART Print
○ 4. Initialize SRAM

● Romstage
○ 5. Memory init

36K SRAM
NS16550 UART

Controller

CPU

SPI Controller

1GB+ RAMFlash Chip

DDR
Controller

1

Serial/Debug
Output

DDR

2

4
3

5

UART

5
SPI

https://github.com/u-root/u-bmc/blob/master/platform/ast2500/boot/platform_g5.S
https://github.com/u-root/u-bmc/blob/master/platform/ast2500/boot/platform_g5.S

Second Target: HiFive Unleashed (FU540)
● RV64GC, 4 harts
● Linux capable
● Prefer to run Linux in M-Mode with no MMU

○ Patches from Christoph Hellwig
○ CONFIG_RISCV_M_MODE=y

● Memory init is open-source and implemented
in native Rust code!

DEMO

https://asciinema.org/a/XnWkMWTABuajsbGPMMTefjuZ2

Third Target: OpenTitan earlgrey

● RISC-V rv32imc
● Embedded, not Linux capable
● Open-source design for a root-of-trust
● https://github.com/lowRISC/opentitan
● No ASIC available yet
● Oreboot current runs on:

○ Verilator
○ FPGA (Artix-7)

● Currently trying to boot Tock kernel (https://www.tockos.org/)

https://github.com/lowRISC/opentitan
https://www.tockos.org/

x86
Ground Rules for x86

1. We prefer all pieces of the firmware to be open-source; but can accept an ME and FSP binary
blob for x86 architectures.

2. Blobs must be essential to boot the system and not provide any extraneous functionality
which could not be implemented in Oreboot.

3. Blobs must be redistributable and are ideally available on GitHub.
4. Blobs must not be submitted to github.com/oreboot/oreboot. We prefer blobs to be submitted

to github.com/oreboot/blobs, github.com/coreboot/blobs or some other GitHub repository.
5. The blobs must be in a binary format. No additional C code, assembly files or header files are

acceptable.
6. Any compromises to the language safety features of Rust must be explicitly stated.

As a "measure" for how open-source firmware is, use the percentage of the final binary size. For
example, if 70% of the firmware bytes are closed-source blob and 30% built from Oreboot source
code, we would say the firmware is 30% open-source.

Getting Involved

Join the Discussion
http://slack.u-root.com/
Join the oreboot channel

Github
https://github.com/oreboot/oreboot

Help Wanted

● Improve CI system
● OpenTitan Port
● HiFive Port
● SPI and other drivers
● Security and vboot
● ...

HELP
WANTED

http://slack.u-root.com/
https://github.com/oreboot/oreboot

