
Open ESP
The Heterogeneous Open-Source Platform

for Developing RISC-V Systems

Luca P. Carloni with Davide Giri

FOSDEM’ 20,
Brussels Feb 1, 2020

Open Source Release of ESP

©Luca Carloni

https://www.esp.cs.columbia.edu

Why ESP?

Heterogeneous systems are pervasive

Integrating accelerators into a SoC is hard

Doing so in a scalable way is very hard

Keeping the system simple to program while doing so is even harder

ESP makes it easy

ESP combines a scalable architecture with a flexible methodology

ESP enables several accelerator design flows
and takes care of the hardware and software integration

3

B
L
A
D
E

C
E
N
T
E
R

D
A
T
A

CPU GPU

$

Accelerators

I/
O

D
D

R
Embedded SoC

Rapid
Prototyping

SoC Integration

A
p

p
lic

at
io

n
 D

ev
el

o
p

er
s

H
ar

d
w

ar
e

D
es

ig
n

er
s

ESP Vision: Domain Experts Can Design SoCs

4

*
*

 B
y

le
w

in
g

@
is

c.
ta

m
u

.e
d

u
L

ar
ry

 E
w

in
g

 a
n

d
 T

h
e

G
IM

P

**

…

…

…accelerator

accelerator

accelerator
HLS

Design
Flows

RTL
Design
Flows

*
 B

y
N

vi
d

ia
 C

o
rp

o
ra

ti
o

n

*

ESP Architecture

• RISC-V Processors

• Many-Accelerator

• Distributed Memory

• Multi-Plane NoC

4

The ESP architecture implements a
distributed system, which is scalable,

modular and heterogeneous,
giving processors and accelerators

similar weight in the SoC

ESP Architecture: Processor Tile

• Processor off-the-shelf
o RISC-V Ariane (64 bit)

SPARC V8 Leon3 (32 bit)

o L1 private cache

• L2 private cache
o Configurable size

o MESI protocol

• IO/IRQ channel
o Un-cached

o Accelerator config. registers,

interrupts, flush, UART, …

5

ESP Architecture: Memory Tile

• External Memory Channel

• LLC and directory partition
o Configurable size

o Extended MESI protocol

o Supports coherent-DMA

for accelerators

• DMA channels

• IO/IRQ channel

6

ESP Architecture: Accelerator Tile

• Accelerator Socket

w/ Platform Services

o Direct-memory-access

o Run-time selection of

coherence model:

 Fully coherent

 LLC coherent

 Non coherent

o User-defined registers

o Distributed interrupt

8

ESP Accelerator Socket

9

Miscellaneous Tile

ESP Platform Services

10

Memory Tile

Accelerator tile Processor Tile
DMA

Reconfigurable coherence

Point-to-point

ESP or AXI interface

DVFS controller

Coherence

I/O and un-cached memory

Distributed interrupts

DVFS controller

Debug interface

Performance counters access

Coherent DMA

Shared peripherals (UART, ETH, …)

Independent DDR Channel

LLC Slice

DMA Handler

ESP Software Socket

11

k
e
rn

e
l

m
o

d
e

Linux

ESP core

ESP accelerator driver

u
s

e
r

m
o

d
e

ESP alloc

ESP Library

Application

• ESP accelerator API

o Generation of device driver

and unit-test application

o Seamless shared memory

/*

* Example of existing C application

* with ESP accelerators that replace

* software kernels 2, 3 and 5

*/

{

int *buffer = esp_alloc(size);

for (...) {

kernel_1(buffer,...); /* existing software */

esp_run(cfg_k2); /* run accelerator(s) */

esp_run(cfg_k3);

kernel_4(buffer,...); /* existing software */

esp_run(cfg_k5);

}

validate(buffer); /* existing checks */

esp_cleanup(); /* memory free */

}

12

In Summary: ESP for Open-Source Hardware

©Luca Carloni

• We contribute ESP to the OSH
community in order to support the
realization of

– more scalable architectures for SoCs
that integrate

– more heterogeneous components,
thanks to a

– more flexible design methodology,
which accommodates different
specification languages and design
flows

• ESP was conceived as a heterogeneous
integration platform from the start and
tested through years of teaching at
Columbia University

• We invite you to use ESP for your
projects and to contribute to ESP!

https://www.esp.cs.columbia.edu

System Level Design Group

Thank you from the ESP team!

https://esp.cs.columbia.edu

https://github.com/sld-columbia/esp

https://esp.cs.columbia.edu/
https://github.com/sld-columbia/esp

