Improving Ibex
Performance

2 lowRISC

Greg Chadwick
RISC-V Devroom FOSDEM 1st February 2020

Ibex

Microcontroller class CPU with two stage pipeline
32-bit RISC-V IMC/EMC with M-Mode, U-Mode and PMP
Written in SystemVerilog

Initially developed as Zero-riscy as part of the PULP platform
by ETH Zurich

Now developed by lowRISC, a not for profit company building
open source silicon through collaborative engineering

Used by the recently announced OpenTitan, an open source
silicon root of trust

1st February 2020 @ lowRISC

2

Improving Performance

e Aim to reduce total cycles to execute Coremark and Embench
e Need to be careful about optimising for the benchmark only

e Analysis of execution provides a useful guide for what to
Improve

e Must consider how applicable improvements will be to code
that isn’t benchmarks

e Planned improvements will be configurable options

o Choose a smaller/simpler Ibex or a faster one

1st February 2020 @ lowRISC

Trial System

e Simulate Ibex with Verilator
e Dual ported memory containing code and data
e Single cycle memory access latency

e Reasonable analogue of a best case ‘real’ system

1st February 2020 @lowRISC 4

Analysis Techniques (1)

e Runthe benchmark
e Trace the simulation
e Examine tracein GTKWave
o Look at signals indicating top-level stall
o Choose a few points to examine why stall is occurring

e No quantitative analysis but quick and easy way to survey
what kinds of things are slowing down execution

1st February 2020 @ lowRISC 5

Trace in GTKWave, Branch Stall

Signals WEVES
116664 ns 116668 ns 116672 ns

instr new id=1
instr valid id=1
pc id[31:0] =00100410 0010040C fe@1e@46 139100464
branch in dec=1 s
branch set=0

operand a 1[31:0] =0000030A 001FF938 0600O30A \ /00160410 BO1FF890
operand b i[31:0] =0000004F 6000HO02 |000EOB4F |FFFFFFF4 £0ODOOOO
operator i[4:0] =6D 00 : '

result o[31:0] =00000001 BO1FFI3A 90OOOO e01FF890

bne t2,s5,100404
1st February 2020 @ lowRISC 6

Trace in GTKWave, Branch Stall

Signals WEVES
116664 ns 116668 ns 116672 ns

instr new id=1
instr valid id=1
pc id[31:0] =00100410 0010040C fe@1e@46 139100464
branch in dec=1]
branch set=0

operand a i[31:0] =0000030A 001FF938 0600O30A \ /00160410 BO1FF890

operand b i[31:0] =0000004F 6000HO02 |000EOB4F FFFFFFF4 000HDEOO
operator i[4:0] =6D 00 o0

Jeeleeses / ep1FF890

result o[31:0] =00000001 ©O1FFI3A 600000

bne t2,s5,100404
1st February 2020 @ lowRISC 7

Trace in GTKWave, Branch Stall

Signals WEVES
116664 ns 116668 ns 116672 ns

instr new id=1
instr valid id=1
pc id[31:0] =00100410 eplee40C feeree4re | bp106464
branch in dec=1 T e \ S—
branch set=0

operand a i[31:0] =0000030A 001FF938 0600O30A \ /00160410 ~_Jee1FF890
operand b i[31:0] =0000004F 6000HO02 |000EOB4F FFFFFFF4 £0ODOOOO
operator i[4:0] =6D 00 o0

Jeeleeses /7 ep1FF890

result o[31:0] =00000001 ©O1FFI3A 600000

bne t2,s5,100404
1st February 2020 @ lowRISC 8

Trace in GTKWave, Load Stall

Signals
Time
clk i=1
instr new id=1
instr valid id=1
pc_id[31:0] =00103F04
data req dec=1
data addr o[31:0] =001FF6AC
data req o=1
data we 0=0
data rvalid 1i=0
data rdata i[31:0] =001FFFB2

1st February 2020

00103F00

1201575 ns

/100103F64

OO1FF6F® | [OO1FFBAC

001FFFB2 |e01FFFB3

lw t3,12(sp)

/ep103F06

POLFF6BO

1201580 ns

1201585 ns

jee103FeA |BP183FAC

/©000000A

OLFFEDO POLFFFBO

12B2C7A34

@ lowRISC

9

Trace in GTKWave, Load Stall

Signals
Time
clk i=1
instr new id=1
instr valid id=1
pc_id[31:0] =00103F04
data req dec=1
data addr o[31:0] =001FF6AC
data req o=1
data we 0=0
data rvalid 1i=0
data rdata i[31:0] =001FFFB2

1st February 2020

00103F00

1201575 ns

/100103F64

OO1FF6F® | [OO1FFBAC

BO1FFFB2

lw t3,12(sp)

/ep103F06

POLFF6BO

NE

1201580 ns

1201585 ns

jee103FeA |BP183FAC

/©000000A

OLFFEDO POLFFFBO

12B2C7A34

PDlowrisC 1)

Analysis Techniques (2)

e Log performance counters after benchmark run
e Use previous survey to decide on interesting things to count

e Examine with spreadsheet to produce quantitative data on
effect stall conditions from informal survey have on
performance

1st February 2020 PDlowriSC]

Branch Stall %

% of total cycles spent calculating branch target

8.00%
6.00%
4.00%
2.00%
0.00%
¥ O N O XN & @SN A >R LW L0
S P& T E S S & F L EEF S & L
@ &€ N @ T & E K S & &
S Q& N I & S & &,g,x &
P @
& €

1st February 2020 PDlowriSC 1)

Memory Stall %

% of total cycles spent waiting for memory response

40.00%
30.00%
20.00%
10.00%
0.00%
SIS WS ORI S @ o D D> D ® oSS O S
6‘?} C & ¥ \o“e F S F S R Q;f,o o\p\ 9.&0 b\@ &,\,\0 @Qp
\Ql .\(,0 é\o ‘&0 N Qo @ Q'\QJ @o 6\0 éQ $\ & R K
S Q & N PN é&, S &Qf @6\ K

1st February 2020 PDlowrISC 13

Branch target ALU

e Add second ALU to calculate
branch targets

e Compute branch target and
branch condition in parallel

® Minor area increase for ~4%
performance gain

1st February 2020

Instruction
Fetch

AJOwy uodNIISU|

Instr

Decode and Execute

Branch

. Target ALU

Decoder

[Data Memory

)

@ lowRISC

14

Implementation Trials
e Need to check impact of change on frequency and area

e Built experimental synthesis flow using Yosys with Timing
Analysis via OpenSTA

e Usingthe nangate 45nm library available from the
OpenROAD repository

e Better numbers likely achievable with commercial tools and
library

o Flow used to see relative changes and areas of timing
pressure

1st February 2020 PDlowrISC |5

Branch Target ALU Implementation Results

Base Branch Target ALU | % change
Coremark/MHz | 2.40 2.51 +4.5 %
Area 27,345 ym? 27,666 um? +1.2 %
Fmax 269 MHz 234 MHz -13.0 %
Coremark 645.6 587.3 -9.0 %

e Addingin branch target ALU reduced maximum frequency
e Overall worse performance at Fmax (but better per MHz)

e What can we do about it?

1st February 2020 PDlowrISC 1§

Can you spot the problem (1) ?

1st February 2020 PDlowriSC 17

Can you spot the problem (2) ?

Previously the branch
decision was stored in
a flop after being
computed by the main
ALU

Now it's being fed
straight in the PC Mux
select

Main ALU result used
to feed into PC
selection mux (as it
computed the target),
which was the worst
path

It now goes via extra
logic into the select
So worst path has got
longer

1st February 2020

Branch

g'l'arget ALU

Instr

(A

Decoder

|

RF

D

Main ALU New
Path

\\\\
T
instr_addr_o
//
Mux
Selection
Logic

PDlowriSC |8

How Do We Fix It?

e Need main ALU result earlier

e Keyissueis selects for ALU operand mux, provided by the
decoder

e Decoder complex blob of logic, so outputs not as early as we
like

e Make the ALU operand mux select outputs earlier from the
decoder and we can solve the problem

1st February 2020 PDlowrISC 19

Instruction Flop Fan-Out
e Instruction flop inID/EX has a large fan-out

o Meaning it feeds its data to many different gates

e Requires buffering to ensure it can drive everything it
connects to

e Reduce required buffering by duplicating it

e Split decode to decide ALU operand select and operation
from duplicated register

e Decode all other control from other register

1st February 2020 PDlowriSC)()

Improved Branch Target ALU Implementation

Base Branch Target ALU | % change
Coremark/MHz | 2.40 2.51 +4.5 %
Area 27,345 um? 27,579 um? +0.9 %
Fmax 269 MHz 250 MHz -7.6 %
Coremark 645.6 627.5 -2.8 %

e Slightly better area due to reduced buffering

o Yosys/ABC doesn’t take IO timing constraints into account

o So doesn’t optimise worst path properly

e Still haven’t restored Fmax

o May not want to run at Fmax anyway

1st February 2020

@ lowRISC

21

Writeback Stage

Instruction

° Add 3 thlrd pipeline Stage, Fetch Decode and Execute Writeback
writeback which holds the
value to be written to the

register file
e Load data from memory writes
direct to the register file

Instr & Decoder
e Drops astall cycle for loads & l '

stores as response only needed
the cycle after ID/EX '
e Greatly Simplified Diagram!

o Significant new stalling
and hazard logic needed

=1
[92]
)
=
c
(@)
=
o
=)
<
D)
3
o
1
<

Data Memory]

1st February 2020 PDlowrISC D))

Writeback Implementation

Base Writeback + BT ALU | % change
Coremark/MHz | 2.40 2.88 +20.0 %
Area 27345 um? | 29212 uym? +6.8 %
Fmax 269 MHz 253 MHz -6.3 %
Coremark 645.60 728.64 +12.9 %

e Notable area cost

o Qutweighed by performance gains

e Little changein Fmax from BT ALU implementation

o Worst case path from BT ALU change still dominates

1st February 2020

@ lowRISC

23

Overall Speedup

Coremark/MHz|Speedup
Base 2.40 -
BT ALU 2.51 4.5%
Writeback + BT ALU |2.88 20%
50.00%
40.00%
30.00%
20.00%
10.00%
0.00%
F XL
X & T E S
OO N

1st February 2020

Geomean Speedup
BT ALU 4.42%
Writeback + BT ALU |21.3%
= Writeback + BT ALU = BT ALU
Z S @ 2 A N> O v v > L& 0] S
S S &F £ FEE P «'o,\%o&\o & &
N ¢ ¥ O P L F & £
’0' é\ , 0 19 0‘ X 0
RN ,({b' .‘0,0 ,é'\e é\(b' (S)
Koy 90.’\\ (\0
PDlowRrISC)/

Find Out More

e Check outthe Ibex repository
www.github.com/lowRISC/ibex

e Third pipeline stage + benchmarking infrastructure not yet in
main repository

o See my ‘ibex_fosdem’ branch at
www.github.com/GregAC/ibex to take a look

e SeethelowRISC website at www.lowrisc.org

o Now recruiting!

e My email: gac@lowrisc.org
1st February 2020 PDlowrISC)5

http://www.github.com/lowRISC/ibex
http://www.github.com/GregAC/ibex
http://www.lowrisc.org
mailto:gac@lowrisc.org

