
The HammerBlade RISC-V Manycore
A Programmable, Scalable RISC-V Fabric

Scott Davidson, Seyed Borna Ehsani, Paul Gao, Emily Furst, Tommy Jung, Sasha Krassovsky,
Max Ruttenberg, Bandhav Veluri, Leonard Xiang,

Dustin Richmond, Shaolin Xie, Chun Zhao,
Mark Oskin, Michael Taylor

Bespoke Silicon Group
University of Washington (http://bjump.org/manycore)

BH

http://bjump.org/manycore

Two Key Trends

HammerBlade seeks to be the “base class”
for these parallel compute fabrics.

Hardware is entering an open source renaissance,
 e.g. open source ISAs, CAD tools, processors, libraries …

New application domains enabled not by Moore’s Law but by:

new DSLs (domain specific languages) → make parallel
 compilation tractable

new parallel compute fabrics → attain energy efficiency
+

Ultra high efficiency compute tile
- 1 instr/cycle RISC-V engine
- >= 4 KB I-Cache
- >= 4 KB Local Data Scratchpad
- FPU
- NOC router
- Scalable, stamp out as many as you want

Highly programmable, highly energy
efficient parallel spatial fabric for
mixed sparse/dense compute

HammerBlade Manycore High Level Architecture: Compute

4K IMEM, 4K DMEM and
32-entry register file
comprises 64% of tile area.

→ Any improvements to the
tile design could at most
reduce area by 36%.

HB Manycore Compute Tile Has Provably Excellent Efficiency

Tile Floorplan in TSMC 16nm

Tile Die Photo in TSMC 16nm

40 tiles per mm^2 in 16nm!
120 tiles per mm^2 in 7nm!

Highly programmable, highly energy
efficient parallel spatial fabric for
mixed sparse/dense compute

Manycore High Level Architecture: Global Memory

Many Parallel DRAM channels
- E.g., HBM2, DDR5, GDDR6

L2 Victim caches on each column
- Sit in front of DRAM channels
- Non-blocking
- Adapts at runtime to evolving data

Manycore High Level Architecture: PGAS

Highly programmable, highly energy
efficient parallel spatial fabric for
mixed sparse/dense compute

Partitioned Global Address Space
- Single LD/ST instruction to access

any memory location on the chip
- Other tiles’ scratchpads
- Global memory

- Non-blocking; each tile can have
many concurrent loads and stores

Manycore High Level Architecture: Tile Groups

Tile Groups
- A Kernel is scheduled to a contiguous

array of tiles, called a Tile Group

- Data is striped across the tile group’s
tiles’ memory, and the tiles collaborate
in parallel on processing the data in
these nearby memories

- Larger working sets, or more
parallelism? → use more tiles!

- Independent tile groups can run in
parallel on different parts of the
array.

Expert-focused programming language for high-performance library development
● CUDA can express independent computation and locality; widely used
● Focus on supporting same synchronization and library calls as CUDA (sync, malloc..)
● Easy to port pre-existing CUDA code over for architectural testing
● High levels of interest from industry for CUDA to RISC-V manycore

CUDALITE: Low-Level C/C++ Programming for Manycore

__global__ void add(int* a, int* b, int* c)
{

int tid = threadIdx.x ;
if (tid < N)
c[tid] = a[tid] + b[tid];

}

hb_tile void add (int* a, int* b, int* c)
{
 #pragma unroll
 for (int x = TG_Index; x < blockDim.x; x += TG_Size) {
 c[x] = a[x] + b[x];
 }
}

C
U

D
A

C
U

D
A

LI
TE

C/C++ with
CUDALITE Library

HammerBlade
Manycore Code

Clang/LLVM

GCC

CUDALITE Host Code:
Two kinds of hosts

Xeon ASIC or FPGA
Manycore
 PCI-E Card

PCI-E Attached
 (Leverage X86 Software!)

 Core Core

Core Core

Core Core

Core Core

SoC Attached
(All RISC-V; Save Power)

BlackParrot
Linux RISC-V
Multicore

HammerBlade
Manycore

Fast-Evolving Full Stack (HW+SW) Design (on its 4th Silicon Gen!)

V1: BSG Ten

10-core system in 180nm (25 mm2)

V2 & 3: Celerity

 511-core system in 16nm (12 mm2)
 World record in RISC-V and Coremark perf

V4: HammerOne

135-core system in 12nm (6 mm2)
 Extensive programmability improvements
 Floating point support

BaseJump STL: Standard Template Library for System Verilog

Library of high-quality implementations of almost every hardware primitive

 See DAC 2018 Paper!

BaseJump ASIC Motherboards & Firmware

Drop your ASICs into our predesigned PCBs

BaseJump ASIC Sockets

Open Source BGA Packages & Sockets
 High speed I/O over narrow links

Other BaseJump Open Source Components

Many universities have used this to bring up their chips!

Seamless integration of new kinds of accelerators into HB manycore

Collaborators at Cornell already adding dense and sparse matrix
accelerators to HB manycore!

Special Thanks To HammerBlade Cornell Team

Profs: Adrian Sampson, Chris Batten, Zhiru Zhang

Students: Philip Bedoukian Alexa VanHattum
& P’docs: Edwin Peguero Neil Adit

Jie Liu Hanchen Jin
Yuewei Hu Zhongyuan Zhao
Nitish Srivastava Peitian Pan
Shunning Jiang Yanghui Ou
Shady Agwa Lin Cheng

(Psst .. Want to add your accelerator? We have a tutorial for you!)

HammerBlade SW Stacks

User-facing Domain Specific Frameworks We Are Developing

Drawing primarily from Graph computations, Machine Learning,
 and their intersection: CUDALITE

GraphIt - DSL for High Performance Graph Analysis

- Decouples algorithm from optimizations

- Edge and vertex sets are the basic primitives and
filter/apply operations define the semantics of the
program

- Scheduling language controls which optimization
corners are used in code generation - allows for
easy optimization space exploration

GraphIt on HammerBlade Example

GraphIt Code

BFS

Generated C++ Code (Runs on x86 Host Co-processor)

GraphIt on HammerBlade Example

GraphIt Code

BFS

Generated C++ Code (Runs on RISC-V Manycore)

Parallel Dense Pull Updates

Tile group sync

Self-assignment of work

GraphIt on HammerBlade Example: Blocked Structured Access

- Graph workloads are memory
intensive - taking full advantage
of compute resources is a
challenge

GraphIt on HammerBlade Example: Blocked Structured Access

- Graph workloads are memory
intensive - taking full advantage
of compute resources is a
challenge

- Vertex data is read in small blocks
into tile’s local memories - store
compactly in single DRAM
channel

GraphIt on HammerBlade Example: Blocked Structured Access

- Graph workloads are memory
intensive - taking full advantage
of compute resources is a
challenge

- Vertex data is read in small blocks
into tile’s local memories - store
compactly in single DRAM
channel

- Edges are partitioned across
DRAM channels - maximizes
message transfer rate for
sparse random access

GraphIt on HammerBlade Example: Blocked Structured Access

- Graph workloads are memory
intensive - taking full advantage
of compute resources is a
challenge

- Vertex data is read in small blocks
into tile’s local memories - store
compactly in single DRAM
channel

- Edges are partitioned across
DRAM channels - maximizes
message transfer rate for
sparse random access

- Vertex updates are restricted to a
windowed range to improve
locality and prevent thrashing in
caches

Getting Involved

HammerBlade Manycore is under the SolderPad license (Apache 2.0 variant for HW)

Getting Started with C/C++ Co-Simulation

Install RTL Simulator

Synopsys VCS O-2018.09-SP2

Clone the repository…

git clone git@github.com:bespoke-silicon-group/bsg_bladerunner

Get the required subprojects

git submodule init; git submodule update

Follow the instructions for running C/C++ co-simulation

https://github.com/bespoke-silicon-group/bsg_bladerunner

Open Source Verilator support would be a solid (but relatively easy) contribution from the community...

mailto:git@github.com
https://github.com/bespoke-silicon-group/bsg_bladerunner

Getting Started with on Amazon F1 FPGA Instances

Install FPGA Tools

Vivado 2019.1

Clone the repository…

git clone git@github.com:bespoke-silicon-group/bsg_bladerunner

Get the required subprojects

git submodule init; git submodule update

Follow the instructions for building the FPGA and Machine images

https://github.com/bespoke-silicon-group/bsg_bladerunner#build-an-amazon-fpga-image-afi

https://github.com/bespoke-silicon-group/bsg_bladerunner#build-an-amazon-machine-image-ami

mailto:git@github.com
https://github.com/bespoke-silicon-group/bsg_bladerunner#build-an-amazon-fpga-image-afi
https://github.com/bespoke-silicon-group/bsg_bladerunner#build-an-amazon-machine-image-ami

Directions you could take HammerBlade Manycore (!!)

Use & improve what we’re building!

Add new SW stacks and domains:

Try out your own accelerators for these domains

Build your own FPGA or ASIC system!

CUDALITE

Taco

The HammerBlade Team

Prof. Michael Taylor

Prof. Mark Oskin

Dr. Dustin Richmond Dr. Chun Zhao Dr. Shaolin Xie

Scott Davidson Max Ruttenberg Tommy Jung Emily Furst

Paul Gao Seyed Borna Ehsani Bandhav Veluri Sasha Krassovsky

We salute you and look forward to your contributions!

BH
http://bjump.org/manycore

This material is based on research sponsored by Air Force Research
Laboratory (AFRL) and Defense Advanced Research Projects Agency
(DARPA) under agreement number FA8650-18-2-7863. The U.S.
Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon.

The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of Air Force Research
Laboratory (AFRL) and Defense Advanced Research Projects Agency
(DARPA) or the U.S. GovernmentSDH

http://bjump.org/manycore

