
A Greybeard's Worst
Nightmare
How Kubernetes and Containers are re-defining the Linux OS

1

Daniel Riek
Fosdem 2020

Introduction
● Name: Daniel Riek Twitter: llunved
● Using GNU/Linux since 1994
● Co-founded Free Software start-up ID-Pro in Europe in 1997
● Worked at Alcove, a french GNU/Linux company 2001-2003
● Red Hat, EMEA Sales Engineering 2003-2005
● Red Hat, ran RHEL Product Management 2005-2011
● CTO at trading startup Vincorex 2011-2012
● Product Management at back-up company Acronis 2012-2013
● Red Hat, managing cross-product integration, container initiative 2013-2017
● Red Hat, Office of the CTO, Artificial Intelligence since 2017

○ Working on FOSS AI incl. projects such as https://opendatahub.io and https://github.com/thoth-station

https://opendatahub.io
https://github.com/thoth-station

DISCLAIMER

So yes, I work at Red Hat, which is a subsidiary of IBM.

Red Hat is a Free and Open Source Cloud Software Company.

However, while I may use the Red Hat stack as an example, nothing I say here can be misconstrued into
an official position of any of my former, current, or future employers. It’s just me.

Greybeard

Greybeards fight Balrogs. They hate systemd. They fork distributions.

The Role of the Linux OS

Infrastructure or

Application Platform?

● In abstract representations of the modern software stack,
the OS is often considered part of the Infrastructure.

● However, an alternative, application-centric view would
consider it’s primary role to provide a common runtime for
applications, abstracting from infrastructure.

Application
View

Infrastructure
View

GNU / Linux

Meanwhile: Growing Software Stack Complexity

Source: www.modulecounts.com

Historic Role of GNU/Linux
Breaking the vertical lock-in of Mainframe & Mini-Computers, UNIX

OPEN
ISV ECOSYSTEM
APPLICATION CONTENT

MAINFRAME

Complete vertical integration

Vendor-controlled
HW/OS/Ecosystem.

UNIX

Vertical integration of
infrastructure & app platform

Semi-open ecosystem.

GNU/Linux - e.g. RHEL

Completely Open HW and ISV
ecosystem with the GNU/Linux
OS as the neutral enterprise
app platform

INFRASTRUCTURE

OPERATING SYSTEM
APPLICATION PLATFORM

ISV ECOSYSTEM
APPLICATION CONTENT

INFRASTRUCTURE

OPERATING SYSTEM
APPLICATION PLATFORM

ISV ECOSYSTEM
APPLICATION CONTENT

LINUX OS / RHEL

P
H

Y
S

IC
A

L
IN

FR
A

S
TR

U
C

TU
R

E

P
R

IVATE
 C

LO
U

D
 &

E
N

TE
R

P
R

IS
E

 V
IR

T

P
U

B
LIC

 C
LO

U
D

S

Early GNU/Linux Stack Management
In the beginning there was /usr/local/ - and stow, and binaries
mounted on NFS.

● Servers were special pets. - They were dog-show exhibits.
○ Inherited from Unix host tradition.

● Software often compiled on the production machine.
● High-maintenance.
● Fragile due to dependencies on each host's environment:

○ Application behaviour depends on the state of the individual
machine.

○ Not efficient for managing artifacts.
● Late-binding based on source-level API.

Doesn't scale in distributed environments (aka PCs).

LINUX KERNEL

COMMON SHARED USER SPACE

/M
N

T/A
P

P
3

HARDWARE

Scalability Through Binary Packaging
Then, There Be RPM and up2date, yum, dpkg, and apt...

● Frozen binary distribution, reproducible builds.
○ Build once, distribute binary across multiple Linux servers.
○ Metadata, signatures.
○ Predictable behavior, dependency management.
○ Management of installed artifacts, updates.
○ Transport for a curated content stream from a trusted source.

● Implicit lock into single instance, single version monolithic userspace.
● Implements a late-binding model for deploying software in Ops based

on an ABI contract.

Welcome to Dependency Hell.
HARDWARE

LINUX KERNEL

COMMON SHARED USER SPACE

OPTIONAL APPS

Efficiency Through Central Control
Finally kickstart, satellite, cfengine, and the likes…

● Mass deployment and recipes
● Efficiency through automation. Binary distribution at scale.
● Volatility of late-binding dependency resolution, conflicts &

compatibility.
● Automate the stack composition on machines.
● Manage the lifecycle of the software stack.
● Centralize management control.
● Components move across dev/test/ops independently.
● Still in Dependency Hell.

Model still largely used today, sometime with the same components plus
newer tools like Ansible.

HARDWARE

LINUX KERNEL

COMMON SHARED USER SPACE

OPTIONAL APPS

HARDWARE

LINUX KERNEL

COMMON SHARED USER SPACE

OPTIONAL APPS

HARDWARE

LINUX KERNEL

COMMON SHARED USER SPACE

OPTIONAL APPS

HARDWARE

LINUX KERNEL

COMMON SHARED USER SPACE

OPTIONAL APPS

A Whiff Of Freedom
Virtualization, Appliances - Everything is a VM

● Common model: Deploy as pre-built images, operate as pet
● Predictable initial stack behaviour
● Abstraction from underlying HW
● Existing tools continue to work - it’s just virtual HW
● Multiple instances, multi-tenant
● Still monolithic inside the VM, still dependency conflicts in VM

Less Dependency Hell - Hello VM Sprawl and inconsistent management.

HARDWARE

HYPERVISOR

LINUX
KERNEL

COMMON
SHARED
USER
SPACE

APP 1

LINUX
KERNEL

COMMON
SHARED
USER
SPACE

APP 2

LINUX
KERNEL

COMMON
SHARED
USER
SPACE

APP 3

VM 1 VM 2 VM 3

Enterprise Virtualization
Infrastructure Abstraction & Density

● Efficient sharing of physical HW due to sharing infrastructure.
● Linux inherited one VM per service from Windows.

○ Multi-tier applications consisting out of multiple service.
○ Heavyweight compared to running multiple processes in a

single instance.
● Efficient cluster management on VM-level, ‘Software Defined’

Datacenter
● Potentially the a single artifact to move across DEV/TEST/PROD if

integrated into a full image-based lifecycle.
● In theory clean delegation. - In practice: shared root access and a lot

of virtual pets.

Liberates your app from the HW lifecycle. Predominant operational paradigm
for data centers in the earlier 2010s.

PHYS
HW

PHYS
HW

PHYS
HW

PHYS
HW

COMPUTE NETWORK STORAGE

VM VM VM

VM VM VM

VM VM VM

VM VM VM

Infrastructure as a Service Cloud
Elastic Infrastructure

● Compute / Storage / Networking on demand
● Opex instead of CAPEX
● Elastically scale up and down as you need it
● Efficiency through scale
● Progressive reduction in cost passed through to customers

VM VM VM

VM VM VM

VM VM VM

VM VM VM

SOMETHING THAT SCALES ON DEMAND

SOMETHING THAT COMPUTES SOMETHING

SOMETHING THAT STORES SOMETHING

SOMETHING THAT CONNECTS SOMETHING

Shifting Paradigms

• Aggregation of services replaces
monolithic systems

• Preference to consume most
current versions

• Open source is the default; driving
rapid growth in content volume
and stack complexity

PREFERENCES &
BEHAVIOR

MACRO
TRENDS

TECHNIQUES
& TOOLS

• Move towards Cloud Native
behaviors

• DevOps enables developers to
manage rapid pace of change

• Automation, automation,
automation….

• “Software is eating the world”

• Business-value driven developers
gaining influence over traditional
IT

• Shift from a broadcast-model to
an on-demand model, SaaS

The (Modern) Cloud
Operational paradigm that maximizes time-to-value:

● Elasticity
● Developer Velocity through service abstraction, integration,

and availability
● Encapsulated Operational Excellence

● Dominated by proprieatry public cloud offerings
● ‘GNU / Linux Distribution as a Service’ - Without the contributions

back.
● ‘Strip-mining’ FOSS and SW innovation in general.
● Move towards service aggregation, vertical integration.

SOMETHING THAT SCALES ON DEMAND

SOMETHING THAT COMPUTES SOMETHING

SOMETHING THAT HAS AN API

SOME
OTHER
THING
WITH AN
API

SOMETHING THAT PROESSES DATA

SOMETHING
THAT
EXECUTES A
FUNCTION

APP

VM

SOMETHING THAT STORES SOMETHING

SOMETHING THAT CONNECTS SOMETHING

APP

VM

Cloud Changed How People See Software
● Centralization of Operational Excellence

● 1990 / 2000s:
○ Access to enterprise HW and Software is exclusive.

● 2005 - 2015:
○ Free Software democratized access.
○ Commercial offerings (e.g. Red Hat) enable Enterprise use.
○ You can get integration, stability, maintenance… But you have

to figure out how to deploy and operate.
● 2020:

○ The cloud operates your infrastructure and services.
○ You focus on the components that differentiate your business.

Predominante operational paradigm for IT in the late 2010s

SOMETHING THAT SCALES ON DEMAND

SOMETHING THAT COMPUTES SOMETHING

SOMETHING THAT HAS AN API

SOME
OTHER
THING
WITH AN
API

SOMETHING THAT PROCESSES DATA

SOMETHING
THAT
EXECUTES A
FUNCTION

APP

VM

SOMETHING THAT STORES SOMETHING

SOMETHING THAT CONNECTS SOMETHING

APP

VM

The Cost of Cloud

● Dominated by proprietary public cloud offerings
● Lock-in with black-box-services
● Data Gravity
● Growing life cycle dependency
● High OPEX when scaled
● Reproducibility?
● ‘GNU / Linux Distribution as a Service’ - Without the

contributions back.
● ‘Strip-mining’ FOSS and SW innovation in general.
● Move towards service aggregation, vertical integration.

SOMETHING THAT SCALES ON DEMAND

SOMETHING THAT COMPUTES SOMETHING

SOMETHING THAT HAS AN API

SOME
OTHER
THING
WITH AN
API

SOMETHING THAT PROESSES DATA

SOMETHING
THAT
EXECUTES A
FUNCTION

APP

VM

SOMETHING THAT STORES SOMETHING

SOMETHING THAT CONNECTS SOMETHING

APP

VM
Vertically Integrated P

ublic C
loud

An Open Alternative?
The biggest challenges to an open alternative to
the proprietary public cloud are

● Service abstraction and time to value

● Sheer number of services and their
integration

● Application portability

● Operational excellence

UNIFIED STORAGE (RED HAT CEPH)

CONTAINER HOST (RHEL CONTAINER HOST)

Microsoft
Azure

AWSOpenStackDatacenterLaptop Google
Cloud

CONTAINER ORCHESTRATION AND MANAGEMENT (OPENSHIFT / KUBERNETES)

S3 API Object Store BLOCK FILE

GPU FPGA

APPLICATION LIFE CYCLE MANAGEMENT (OPENSHIFT)

DEVOPS WORKFLOW (CODE & DATA)

API GATEWAY (3SCALE) SERVICE MESH (ISTIO)

SERVERLESS

PRIVATE MICRO SERVICES
(CONTAINERIZED CUSTOM APPS)

CONTAINER APPS

PRE-DEFINED AI LIBRARY
(BOTS | ANOMALY | CLASSIFICATION | SENTIMENT | …)

AI TOOLCHAIN & WORKFLOW
(JUPYTER, SUPERSET, …)

COMMON SERVICES

SERVICE CATALO
G & SELF SERVICE UI / CLI

IDEN
TITY / PO

LICY (ACCESS, PLACEM
EN

T) / LIN
EAGE (CO

DE
AN

D DATA)

M
ANAGEM

EN
T CO

N
SO

LE / IN
SIGHTS / AIO

PS
(PRO

M
ETHEUS | ELASTIC | …

)

FEDERATION

RH Core
Platform

OpenShift ALM

Red Hat
Middleware

Community &
ISV Ecosystem

Technology
Roadmap

Customer
Content

LEGEND

PYTHON / FLASK JAVA JAVASCRIPT ...

STREAMING (KAFKA - streamzi)

MSG BUS (AMQ) ANALYTICS (SPARK) ML (TENSORFLOW | …) MEMORY CACHE (JDG) ||
DECISION (BxMS)

HDFS | REDIS | SQL | NoSQL |
GRAPHDB | TIMESERIES |

ELASTIC | ...

AI STACK COMPLEXITY - RH-INTERNAL
EXAMPLE

Traditional Distro vs App-Centricity
Diminishing Returns at Growing Complexity
Traditional binary software distribution great for foundational platform components…

But:

● Modern software stacks have become too complex to be mapped into a common,
monolithic namespace.

● As a developer, I have to go to native packaging (e.g. npm) anyways because the
distribution does only provide a small part of what I need to build my application.

● Slow delivering new versions to app developers.
● The higher in the stack, the bigger the issue.
● Re-packaging, frozen binary distribution offers little value for the App developer.
● Upstream binary/bytecode formats sufficient, they compile their software anyways, lock-in

for hybrid environments.
● Testing is more valid if done with the actual application, using it.
● Updating of services in production at the component level is too volatile.

Liberation? - Containers
Expanding use of containers, from VServer over LXC to OCI

● Separate the application runtimes from system runtime.
○ Like chroot but with an epstein drive.

● Multi-instance, multi-version environment with possible
multi-tenancy: each service has it’s own binary runtime.

● Light-weight - at the end, it’s just linux processes separated by kernel
features: CGroups, Namespaces, SELinux

Good bye Dependency Hell

If you are running Fedora, try:

sudo dnf -y install toolbox

toolbox enter

P
H

Y
S

P
R

IVATE

C
LO

U
D

 &

V
IR

T

P
U

B
LIC

C

LO
U

D

LINUX KERNEL

HOST USER SPACE

APP 2

APP USER
SPACE 2

APP USER
SPACE 1

APP 3

APP USER
SPACE 3

APP 1

Enter: The Container Revolution
OCI Containers provide the package format for Application-Centric IT

● Aggregate packaging deployed into containers.
○ Initiated by the project previously known as ‘Docker’. Now implemented by

native stack with CRI-O, Podman, and Buildah.
○ Combine existing Linux Container technology with Tar + overlays -> Unicorns

● Frozen binary distribution, reproducible builds.
○ Build once, distribute binary across multiple Linux servers.
○ Metadata, signatures.
○ Management of installed artifacts, updates.
○ Transport for a curated content from a trusted source.

● Fully predictable stack behaviour, life cycle, lightweight.
● Implements an early-binding model for deploying applications packaged by a

developer. CI/CD friendly.

The best of both worlds. Encapsulates tack complexity and provides a
relatively stable interface.

Source: http://www.clipartpanda.com/clipart_images/narwhal-facts-by-whispered-4184726

Multi Container Apps
In reality, most applications consist of multiple containerized services.

● Ideal container is only a single binary.
● Applications are aggregated from multiple containerized services.
● Ideal for cloud native applications. Hybrid model for existing apps.
● From multi-tier applications to micro services.
● Static linking or dynamic orchestration.

Great to solve dependency hell, but how to make sure my frontend knows which
database to talk to?

Container
Service

Container
Service

Container
Service

Container
Service

Container
Service

Container
Service

Container
Service

Container
Service

Container
Service

P
H

Y
S

P
R

IVATE

C
LO

U
D

 &

V
IR

T

P
U

B
LIC

C

LO
U

D

LINUX KERNEL

HOST USER SPACE

Kubernetes: The Cluster Is The Computer
By default , everything is a cluster

● Kubernetes manages containerized services across a cluster of Linux
nodes.

● Application definition model, describing the relationship between
services in abstraction from the individual node.

○ Abstraction from the underlying infrastructure: compute,
network, storage.

○ Same application definition remains valid across changing
infrastructure.

● Whole stack artifacts move across dev/test/ops unmodified.
● Scale-out capabilities and HA are commoditized into the standard

orchestration.
● Often built around immutable infrastructure models.

P
H

Y
S

P
R

IVATE

C
LO

U
D

 &

V
IR

T

P
U

B
LIC

C

LO
U

D

KUBERNETES ORCHESTRATION

Operators: Standardized Operational Model
PROBLEM: How to manage the operation of complex, multi-container
apps?

SOLUTION: Kubernetes Operators
● Active component implementing the operational logic for a specific

application.
● Capability Levels

1) Basic Install
2) Seamless Upgrades
3) Full Lifecycle
4) Deep Insights
5) Auto Pilot

Federate the encapsulation of operational Excellence.

Future: AI Ops

Container
Service

Container
Service

Container
Service

P
H

Y
S

P
R

IVATE

C
LO

U
D

 &

V
IR

T

P
U

B
LIC

C

LO
U

D

LINUX KERNEL

HOST USER SPACE

Application Operator

Operators: Standardized Operational Model

https://operatorhub.io/

The New App-Centric Platform

KUBERNETES
(E.G. RED HAT OPENSHIFT)
APPLICATION PLATFORM
ON GNU/LINUX

CONTAINERIZED APPLICATION LAYER
ON GNU/LINUX, MANAGED BY A
KUBERNETES OPERATOR

INFRASTRUCTURE

DEVELOPER
CONTENT
ECOSYSTEM

PACKAGED
SERVICES
ECOSYSTEM

DEVELOPER
TOOLING

MANAGEMENT
TOOLS

Application
View

Infrastructure
View

GNU / LINUX
(E.G. Red Hat Enterprise
Linux)

P
H

Y
S

P
R

IVATE

C
LO

U
D

 &

V
IR

T

P
U

B
LIC

C

LO
U

D

Conclusions
• GNU / Linux’ historic role was to break vertical integration and provide a

common platform for an open ecosystem.
• The cloud has changed IT, driving efficiency across elasticity, developer

velocity and encapsulated operational excellence.
• The downside of cloud is concentration, vertical integration and lock-in.
• Containers and Kubernetes offer the opportunity to create an open

alternative platform.
• Kubernetes and operators provide the base for a standardized

operational model that can competitive to the cloud providers’
operational expertise.

• It can enable a heterogeneous ecosystem of services at the same level of
service abstraction as the public Clouds.

• FOSS needs to go beyond software access and democratize operations.

Talk Recommendations
• Thoth - a recommendation engine for Python applications

Fridolín Pokorný
– Room: UB2.252A (Lameere)
– Time: Saturday - 18:00
– https://fosdem.org/2020/schedule/event/python2020_thot/

• Do Linux Distributions Still Matter with Containers?
Scott McCarty

– Room: K.3.201
– Time: Sunday - 09:00
– https://fosdem.org/2020/schedule/event/dldsmwc/

https://fosdem.org/2020/schedule/event/python2020_thot/
https://fosdem.org/2020/schedule/event/dldsmwc/

Thank you!

