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What’s wrong with iptables?
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IPtables runs into a couple of significant problems:

● Iptables updates must be made by recreating and updating all rules in a single transaction.
● Implements chains of rules as a linked list, so all operations are O(n).
● The standard practice of implementing access control lists (ACLs) as implemented by iptables was to use 

sequential list of rules.
● It’s based on matching IPs and ports, not aware about L7 protocols.
● Every time you have a new IP or port to match, rules need to be added and the chain changed.
● Has high consumption of resources on Kubernetes.

Based on the above mentioned issues under heavy traffic conditions or in a system that has a large number of changes to 
iptable rules the performance degrades.

Measurements show unpredictable latency and reduced performance as the number of services grows.

What’s wrong with legacy iptables?
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Kubernetes uses iptables for...

● kube-proxy - the component which implements Services and load 
balancing by DNAT iptables rules

● the most of CNI plugins are using iptables for Network Policies
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And it ends up like that
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What is BPF?
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HW Bridge OVS .

Netdevice / Drivers

Traffic Shaping

Ethernet

IPv4 IPv6

Netfilter

TCP UDP Raw

Sockets

System Call Interface

Process Process Process ● The Linux kernel stack is split into multiple abstraction 
layers.

● Strong userspace API compatibility in Linux for years.

● This shows how complex the linux kernel is and its years 
of evolution.

● This cannot be replaced in a short term.

● Very hard to bypass the layers.

● Netfilter module has been supported by linux for more 
than two decades and packet filtering has to applied to 
packets that moves up and down the stack.

Linux Network Stack
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Each eBPF program can exploit a 
different matching algorithm (e.g., 
exact match, longest prefix match, 
etc).

Each eBPF program is 
injected only if there are 
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field.

LBVS is implemented 
with a chain of eBPF 
programs, connected 
through tail calls.

Header parsing is done 
once and results are kept 
in a shared map for 
performance reasons

BPF based tail calls
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BPF goes into...

● Load balancers - katran
● perf
● systemd
● Suricata
● Open vSwitch - AF_XDP
● And many many others
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BPF is used by...
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Cilium
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What is Cilium?
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CNI Functionality
CNI is a CNCF ( Cloud Native Computing Foundation) project for Linux Containers
It consists of specification and libraries for writing plugins.
Only care about networking connectivity of containers

● ADD/DEL

General container runtime considerations for CNI:

The container runtime must

● create a new network namespace for the container before invoking any plugins
● determine the network for the container and add the container to the each network by calling the corresponding plugins for each network
● not invoke parallel operations for the same container.
● order ADD and DEL operations for a container, such that ADD is always eventually followed by a corresponding DEL.
● not call ADD twice ( without a corresponding DEL ) for the same ( network name, container id, name of the interface inside the container).

When CNI ADD call is invoked it tries to add the network to the container with respective veth pairs and assigning IP address from the respective IPAM 
Plugin or using the Host Scope.

When CNI DEL call is invoked it tries to remove the container network, release the IP Address to the IPAM Manager and cleans up the veth pairs.
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Cilium as CNI Plugin

container A container B container C

Cilium Networking CNI

K8s pod
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Networking modes

Use case:
Cilium handling routing between nodes

Encapsulation

Use case:
Using cloud provider routers, using BGP 
routing daemon

Direct routing

Node A

Node B

Node C
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N
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Node A

Node B Node C

Cloud or BGP
routing
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Pod IP Routing - Overlay Routing ( Tunneling mode)
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Pod IP Routing - Direct Routing Mode
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L3 filtering – label based, ingress

Pod
Labels: role=frontend

IP: 10.0.0.1

Pod
Labels: role=frontend

IP: 10.0.0.2

Pod
IP: 10.0.0.5

Pod
Labels: role=backend

IP: 10.0.0.3

Pod
Labels: role=frontend

IP: 10.0.0.4

allow

de
ny
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L3 filtering – label based, ingress
apiVersion: "cilium.io/v2"

kind: CiliumNetworkPolicy

description: "Allow frontends to access backends"

metadata:

  name: "frontend-backend"

spec:

  endpointSelector:

    matchLabels:

      role: backend

  ingress:

  - fromEndpoints:

    - matchLabels:

        class: frontend
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L3 filtering – CIDR based, egress

IP: 10.0.1.1
Subnet: 10.0.1.0/24

IP: 10.0.2.1
Subnet: 10.0.2.0/24

allow

deny

Cluster A

Pod
Labels: role=backend

IP: 10.0.0.1

Any IP not belonging
to 10.0.1.0/24
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L3 filtering – CIDR based, egress
apiVersion: "cilium.io/v2"

kind: CiliumNetworkPolicy

description: "Allow backends to access 10.0.1.0/24"

metadata:

  name: "frontend-backend"

spec:

  endpointSelector:

    matchLabels:

      role: backend

  egress:

  - toCIDR:

    - IP: “10.0.1.0/24”
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L4 filtering
apiVersion: "cilium.io/v2"

kind: CiliumNetworkPolicy

description: "Allow to access backends only on TCP/80"

metadata:

  name: "frontend-backend"

spec:

  endpointSelector:

    matchLabels:

      role: backend

  ingress:

  - toPorts:

    - ports:

      - port: “80”

        protocol: “TCP”
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L4 filtering

Pod
Labels: role=backend

IP: 10.0.0.1

allow

deny

TCP/80

Any other port
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L7 filtering – API Aware Security

Pod
Labels: role=api

IP: 10.0.0.1

GET /articles/{id}

GET /private

Pod
IP: 10.0.0.5
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L7 filtering – API Aware Security
apiVersion: "cilium.io/v2"

kind: CiliumNetworkPolicy

description: "L7 policy to restict access to specific HTTP endpoints"

metadata:

  name: "frontend-backend"
  endpointSelector:

    matchLabels:

      role: backend

  ingress:

  - toPorts:

    - ports:

      - port: “80”

        protocol: “TCP”

      rules:

        http:

        - method: "GET"

          path: "/article/$"
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 Standalone proxy, L7 filtering

Node A
Pod A

     + BPF

      Envoy

Generating BPF programs for
L7 filtering through libcilium.so 

Node B
Pod B

      + BPF

       Envoy

Generating BPF programs for
L7 filtering through libcilium.so 

Generating BPF programs
for L3/L4 filtering

Generating BPF programs
for L3/L4 filtering

VXLAN
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Features
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Cluster Mesh
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Istio (Transparent Sidecar injection) 
without Cilium
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Istio with cilium and sockmap

Cilium CNI Cilium CNI
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Istio

Service A Service B Service C

Cilium Networking CNI

K8s pod

K8s cluster

K8s node K8s node
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Istio - Mutual TLS

Service A Service B

Cilium Networking CNI
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Istio - Deferred kTLS

Service A Service B

Cilium Networking CNI
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Kubernetes Services

● Hash table.

BPF, Cilium

● Linear list.
● All rules in the chain have to be 
replaced as a whole.

Iptables, kube-proxy

Key

Key

Key

Value

Value

Value

Rule 1

Rule 2

Rule n

...
Search O(1)
InsertO(1)
Delete O(1)

Search O(n)
InsertO(1)
Delete O(n)
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us
ec

number of services in cluster
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CNI chaining

Policy enforcement, load balancing,
multi-cluster connectivity

IP allocation, configuring network
interface, encapsulation/routing 
inside the cluster
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Native support for AWS ENI
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HUBBLE

Hubble is a fully distributed networking and security observability platform for cloud native workloads.
It is built on top of Cilium and eBPF to enable deep visibility in a transparent manner.

Hubble provides

● Service dependencies and communication map
● Operational monitoring and alerting
● Application monitoring
● Secure observability

Known limitations of Hubble:

● Hubble is in beta
● Not all components of Hubble are covered by automated testing.
● Architecture is scalable but not all code paths have been optimized for efficiency and scalability yet



46

HUBBLE Components

The following components make up Hubble:

● Hubble Agent
○ The Hubble Agent is what runs on each worker node. It interacts with the Cilium agent running on the 

same node and serves the flow query API as well as the metrics.
● Hubble Storage

○ Hubble storage layer consists of an in-memory storage able to store a fixed number of flows per node.
● Hubble CLI

○ The CLI connects to the flow query API of a Hubble agent running on a node and allows to query the 
flows stored in the in-memory storage using server-side filtering.

● Hubble UI
○ The Hubble UI uses the flow query API to provide a graphical service communication map based on the 

observed flows.
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Hubble running on top of Cilium and eBPF
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Hubble Service Maps
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Hubble HTTP metrics
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To sum it up
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Why Cilium is awesome?

● It makes disadvantages of iptables disappear. And always gets the best 
from the Linux kernel.
● Cluster Mesh / multi-cluster.
● Makes Istio faster.
● Offers L7 API Aware filtering as a Kubernetes resource. 
● Integrates with the other popular CNI plugins – Calico, Flannel, Weave, 
Lyft, AWS CNI.




