
Replacing iptables with eBPF in
Kubernetes with Cilium
Cilium, eBPF, Envoy, Istio, Hubble

Michal Rostecki
Software Engineer
mrostecki@suse.com
mrostecki@opensuse.org

Swaminathan Vasudevan
Software Engineer
svasudevan@suse.com

mailto:mrostecki@suse.com
mailto:mrostecki@opensuse.org
mailto:mrostecki@suse.com

22

What’s wrong with iptables?

3

IPtables runs into a couple of significant problems:

● Iptables updates must be made by recreating and updating all rules in a single transaction.
● Implements chains of rules as a linked list, so all operations are O(n).
● The standard practice of implementing access control lists (ACLs) as implemented by iptables was to use

sequential list of rules.
● It’s based on matching IPs and ports, not aware about L7 protocols.
● Every time you have a new IP or port to match, rules need to be added and the chain changed.
● Has high consumption of resources on Kubernetes.

Based on the above mentioned issues under heavy traffic conditions or in a system that has a large number of changes to
iptable rules the performance degrades.

Measurements show unpredictable latency and reduced performance as the number of services grows.

What’s wrong with legacy iptables?

4

Kubernetes uses iptables for...

● kube-proxy - the component which implements Services and load
balancing by DNAT iptables rules

● the most of CNI plugins are using iptables for Network Policies

5

And it ends up like that

6

7

What is BPF?

8

HW Bridge OVS .

Netdevice / Drivers

Traffic Shaping

Ethernet

IPv4 IPv6

Netfilter

TCP UDP Raw

Sockets

System Call Interface

Process Process Process ● The Linux kernel stack is split into multiple abstraction
layers.

● Strong userspace API compatibility in Linux for years.

● This shows how complex the linux kernel is and its years
of evolution.

● This cannot be replaced in a short term.

● Very hard to bypass the layers.

● Netfilter module has been supported by linux for more
than two decades and packet filtering has to applied to
packets that moves up and down the stack.

Linux Network Stack

9

HW Bridge OVS .

Netdevice / Drivers

Traffic Shaping

Ethernet

IPv4 IPv6

Netfilter

TCP UDP Raw

Sockets

System Call Interface

Process Process Process

BPF System calls

BPF Sockmap and
Sockops

BPF TC hooks

BPF XDP

BPF kernel hooks

BPF cGroups

10

M
pp

s

11

PREROUTING INPUT OUTPUTFORWARD POSTROUTING

FILTER

FILTER FILTER

NAT
NAT

Routing
Decision

NAT

Routing
Decision

Routing
Decision

Netdev
(Physical or

virtual Device)

Netdev
(Physical or

virtual Device)

Local
Processes

eBPF
Code

eBPF
Code

IPTables
netfilter
hooks

eBPF
TC
hooks

XDP
hooks

BPF replaces IPtables

12

NetFilter NetFilter

To Linux
Stack

From Linux
Stack

Netdev
(Physical or

virtual Device)

Netdev
(Physical or

virtual Device)

Ingress
Chain

Selector

INGRESS
CHAIN

FORWARD
CHAIN

[local dst]

[remote
dst]

TC/XDP Ingress
hook

TC Egress hook

Egress Chain
Selector

OUTPUT
CHAIN

[local src]

[remote
src]

Update
session

Label Packet

Update
session

Label Packet

Store
session

Store
session

Store
session

Update
session

Label Packet

Connection Tracking

BPF based filtering architecture

13

….

Headers
parsing

IP.dst
lookup

IP1 bitv1
IP2 bitv2
IP3 bitv3

eBPF Program #1 eBPF Program #2 eBPF Program #3

IP.proto
lookup

* bitv1
udp bitv2
tcp bitv3

Bitwise
AND

bit-vectors

Search
first

Matching
rule

Update
counters

ACTION
(drop/

accept)

rule1 act1
rule2 act2
rule3 act3

rule1 cnt1
rule2 cnt2

eBPF
Program

eBPF Program #N

Packet in
Packet out

From eBPF hook
To eBPF hook

Ta
il

ca
ll

Ta
il

ca
ll

Ta
il

ca
ll

Ta
il

ca
ll

Packet header offsets

Bitvector with temporary result

per cpu _array shared across the entire program chain

per cpu _array shared across the entire program chain

Each eBPF program can exploit a
different matching algorithm (e.g.,
exact match, longest prefix match,
etc).

Each eBPF program is
injected only if there are
rules operating on that
field.

LBVS is implemented
with a chain of eBPF
programs, connected
through tail calls.

Header parsing is done
once and results are kept
in a shared map for
performance reasons

BPF based tail calls

14

BPF goes into...

● Load balancers - katran
● perf
● systemd
● Suricata
● Open vSwitch - AF_XDP
● And many many others

15

BPF is used by...

1616

Cilium

17

What is Cilium?

18

CNI Functionality
CNI is a CNCF (Cloud Native Computing Foundation) project for Linux Containers
It consists of specification and libraries for writing plugins.
Only care about networking connectivity of containers

● ADD/DEL

General container runtime considerations for CNI:

The container runtime must

● create a new network namespace for the container before invoking any plugins
● determine the network for the container and add the container to the each network by calling the corresponding plugins for each network
● not invoke parallel operations for the same container.
● order ADD and DEL operations for a container, such that ADD is always eventually followed by a corresponding DEL.
● not call ADD twice (without a corresponding DEL) for the same (network name, container id, name of the interface inside the container).

When CNI ADD call is invoked it tries to add the network to the container with respective veth pairs and assigning IP address from the respective IPAM
Plugin or using the Host Scope.

When CNI DEL call is invoked it tries to remove the container network, release the IP Address to the IPAM Manager and cleans up the veth pairs.

19

 Kubernetes API Server

Kubelet

CRI-Containerd

CNI-Plugin (Cilium)
Cilium Agent

eth0

BPF Maps

Container2

Container1

Linux Kernel
Network
Stack 000 c1 FE 0A

001 54 45 31
002 A1 B1 C1
004 32 66 AA

cni-add()..

Kubectl

K8s Pod
Userspace

Kernel

bpf_syscall()

BPF
Hook

Cilium CNI Plugin control Flow

20

VM1
Cont

1
Cont

2
Cont

3 App

TC BPF

XDP

CILIUM AGENT DAEMON

CILIUM CLI CILIUM MONITOR

CILIUM HEALTH

CILIUM HEALTH NAMESPACE

PLUGIN

Build sk_buff

B
P
F

m
a
p
s

Device Driver

Queueing and Forwarding

IP Layer

Virtual
Net
Devices

PHYSICAL LAYER (NETWORK HARDWARE

TCP/UDP Layer
A
F
-
X
D
P

AF-INET AF-RAW

VM’s and Containers Apps
CILIUM POD (Control Plane)

U
S
E
R

S
P
A
C
E

K
E
R
N
E
L

S
P
A
C
E

NETWORK STACK with BPF hook points

Bpf_create_map
sSO_ATTACH_BPF

BPF
(sockmap,
sockopts

BPF-Cont3
BPF-Cont2
BPF-Cont1

BPF-Cilium B
p

f_lo
o

ku
p

_elem
en

ts

CILIUM HOST_NET

CILIUM
OPERATOR

Cilium Components with BPF hook points and BPF maps shown in
Linux Stack Orchestrator

21

Cilium as CNI Plugin

container A container B container C

Cilium Networking CNI

K8s pod

K8s cluster

K8s node K8s node

K8s pod K8s pod

eth0 eth0 eth0

lxc0 lxc0 lxc1

eth0 eth0

22

Networking modes

Use case:
Cilium handling routing between nodes

Encapsulation

Use case:
Using cloud provider routers, using BGP
routing daemon

Direct routing

Node A

Node B

Node C

VXLAN

VXLA
N

VXLAN

Node A

Node B Node C

Cloud or BGP
routing

23

Pod IP Routing - Overlay Routing (Tunneling mode)

24

Pod IP Routing - Direct Routing Mode

25

L3 filtering – label based, ingress

Pod
Labels: role=frontend

IP: 10.0.0.1

Pod
Labels: role=frontend

IP: 10.0.0.2

Pod
IP: 10.0.0.5

Pod
Labels: role=backend

IP: 10.0.0.3

Pod
Labels: role=frontend

IP: 10.0.0.4

allow

de
ny

26

L3 filtering – label based, ingress
apiVersion: "cilium.io/v2"

kind: CiliumNetworkPolicy

description: "Allow frontends to access backends"

metadata:

 name: "frontend-backend"

spec:

 endpointSelector:

 matchLabels:

 role: backend

 ingress:

 - fromEndpoints:

 - matchLabels:

 class: frontend

27

L3 filtering – CIDR based, egress

IP: 10.0.1.1
Subnet: 10.0.1.0/24

IP: 10.0.2.1
Subnet: 10.0.2.0/24

allow

deny

Cluster A

Pod
Labels: role=backend

IP: 10.0.0.1

Any IP not belonging
to 10.0.1.0/24

28

L3 filtering – CIDR based, egress
apiVersion: "cilium.io/v2"

kind: CiliumNetworkPolicy

description: "Allow backends to access 10.0.1.0/24"

metadata:

 name: "frontend-backend"

spec:

 endpointSelector:

 matchLabels:

 role: backend

 egress:

 - toCIDR:

 - IP: “10.0.1.0/24”

29

L4 filtering
apiVersion: "cilium.io/v2"

kind: CiliumNetworkPolicy

description: "Allow to access backends only on TCP/80"

metadata:

 name: "frontend-backend"

spec:

 endpointSelector:

 matchLabels:

 role: backend

 ingress:

 - toPorts:

 - ports:

 - port: “80”

 protocol: “TCP”

30

L4 filtering

Pod
Labels: role=backend

IP: 10.0.0.1

allow

deny

TCP/80

Any other port

31

L7 filtering – API Aware Security

Pod
Labels: role=api

IP: 10.0.0.1

GET /articles/{id}

GET /private

Pod
IP: 10.0.0.5

32

L7 filtering – API Aware Security
apiVersion: "cilium.io/v2"

kind: CiliumNetworkPolicy

description: "L7 policy to restict access to specific HTTP endpoints"

metadata:

 name: "frontend-backend"
 endpointSelector:

 matchLabels:

 role: backend

 ingress:

 - toPorts:

 - ports:

 - port: “80”

 protocol: “TCP”

 rules:

 http:

 - method: "GET"

 path: "/article/$"

33

 Standalone proxy, L7 filtering

Node A
Pod A

 + BPF

 Envoy

Generating BPF programs for
L7 filtering through libcilium.so

Node B
Pod B

 + BPF

 Envoy

Generating BPF programs for
L7 filtering through libcilium.so

Generating BPF programs
for L3/L4 filtering

Generating BPF programs
for L3/L4 filtering

VXLAN

34

Features

35

Cluster Mesh

Cluster A Cluster B

Node A
Pod A

 + BPF

Node B

 + BPF

Container

eth0

Pod B
Container

eth0

Pod C
Container

eth0

External etcd

Node A
Pod A

 + BPF

Container

eth0

36

Istio (Transparent Sidecar injection)
without Cilium

Socket Socket Socket Socket

Service Service

Socket

TCP/IP

Ethernet

eth0

Socket

TCP/IP

Ethernet

eth0

Network

K8s Pod K8s Pod

K8s Node

TCP/IP

Ethernet

IPtablesIPtables

TCP/IP

Ethernet

IPtables

Loopback

IPtables IPtables IPtables

TCP/IP TCP/IP

Ethernet Ethernet

Loopback

37

Istio with cilium and sockmap

Cilium CNI Cilium CNI

Socket Socket Socket Socket

Service Service

Socket

TCP/IP

Ethernet

eth0

Socket

TCP/IP

Ethernet

eth0

Network

K8s Pod K8s Pod

K8s Node

38

Istio

Service A Service B Service C

Cilium Networking CNI

K8s pod

K8s cluster

K8s node K8s node

K8s pod K8s pod

Istio
Pilot/Mixer/Citadel

39

Istio - Mutual TLS

Service A Service B

Cilium Networking CNI

K8s pod

K8s cluster

K8s node K8s node

K8s pod

Istio
Pilot/Mixer/Citadel

Mutual TLS

40

Istio - Deferred kTLS

Service A Service B

Cilium Networking CNI

K8s pod

K8s cluster

K8s node K8s node

K8s pod

Istio
Pilot/Mixer/Citadel

Deferred kTLS
encryption

External
Github
Service

External
Cloud
Network

41

Kubernetes Services

● Hash table.

BPF, Cilium

● Linear list.
● All rules in the chain have to be
replaced as a whole.

Iptables, kube-proxy

Key

Key

Key

Value

Value

Value

Rule 1

Rule 2

Rule n

...
Search O(1)
InsertO(1)
Delete O(1)

Search O(n)
InsertO(1)
Delete O(n)

42

us
ec

number of services in cluster

43

CNI chaining

Policy enforcement, load balancing,
multi-cluster connectivity

IP allocation, configuring network
interface, encapsulation/routing
inside the cluster

44

Native support for AWS ENI

45

HUBBLE

Hubble is a fully distributed networking and security observability platform for cloud native workloads.
It is built on top of Cilium and eBPF to enable deep visibility in a transparent manner.

Hubble provides

● Service dependencies and communication map
● Operational monitoring and alerting
● Application monitoring
● Secure observability

Known limitations of Hubble:

● Hubble is in beta
● Not all components of Hubble are covered by automated testing.
● Architecture is scalable but not all code paths have been optimized for efficiency and scalability yet

46

HUBBLE Components

The following components make up Hubble:

● Hubble Agent
○ The Hubble Agent is what runs on each worker node. It interacts with the Cilium agent running on the

same node and serves the flow query API as well as the metrics.
● Hubble Storage

○ Hubble storage layer consists of an in-memory storage able to store a fixed number of flows per node.
● Hubble CLI

○ The CLI connects to the flow query API of a Hubble agent running on a node and allows to query the
flows stored in the in-memory storage using server-side filtering.

● Hubble UI
○ The Hubble UI uses the flow query API to provide a graphical service communication map based on the

observed flows.

47

Hubble running on top of Cilium and eBPF

48

Hubble Service Maps

49

Hubble HTTP metrics

5050

To sum it up

51

Why Cilium is awesome?

● It makes disadvantages of iptables disappear. And always gets the best
from the Linux kernel.
● Cluster Mesh / multi-cluster.
● Makes Istio faster.
● Offers L7 API Aware filtering as a Kubernetes resource.
● Integrates with the other popular CNI plugins – Calico, Flannel, Weave,
Lyft, AWS CNI.

