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Forward-looking Statements
This presentation may include certain "forward-looking statements" within the meaning of Section 27A of 
the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as 
amended, including statements concerning our product offerings. These forward-looking statements reflect 
our current views about our plans, intentions, expectations, strategies and prospects, which are based on 
the information currently available to us and on assumptions we have made. Actual results may differ 
materially from those described in the forward-looking statements and are subject to a variety of 
assumptions, uncertainties, risks and factors that are beyond our control, including those risks detailed 
under the caption "Risk Factors" and elsewhere in our Securities and Exchange Commission filings and 
reports, including the final prospectus for our initial public offering filed with the Securities and Exchange 
Commission on September 19, 2019, as well as future filings and reports by us. Except as required by law, 
we undertake no duty or obligation to update any forward-looking statements contained in this release as a 
result of new information, future events, changes in expectations or otherwise.



– What is profiling?

– CPU & Wall time profiling

– Memory profiling

– Threading profiling

– Exporting & using the data
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What is profiling?



Getting frequency and 
usage of your code



Deterministic
Run a scenario and meter all 
execution function by function

Statistical
Sample your program periodically 
to see what it is doing

Two types of profiling



Register time before 
function() is called

Call function() Register time after 
function() is called

Deterministic profiling



Only wall time

Granularity to the function

0–∞% overhead

Custom data format

cProfile shortcomings



Production system
=

statistical profiling



Wake up Register what the 
program’s doing right 

now (maybe)

Go back to sleep

Statistical profiling



Wall & CPU time

Granularity to the line

Low overhead

Can report raised exceptions

Sampling strengths



State of the art



CPU & Wall time



Sleep 10 ms.
time.sleep()

1 2 3
Get threads stacks.
sys._current_frames()

Get CPU time for 
each thread.
time.pthread_getcpuclockid()

<Thread-1>
  a() myfile.py:123
    b() myfile.py:394
      c() mymodule.py:049
<Thread-2>
  d() myfile.py:123
    b() myfile.py:395



Wall
Time

CPU 
Time



High Performance

~1% CPU usage @ 100 Hz
10 threads × 30 functions

Exception Profiling Limit resources usage

High performance & precision



No C profiling
(yet)



Memory



tracemalloc



time.sleep(0.01)

1 2 3
# 0 <= n <= 100
counter += n

if counter >= 100:
    counter -= 100
    tracemalloc.start()
else:
    tracemalloc.stop()



Allocations 
Count

Allocations 
Size



Overhead No thread information Only file names and 
line numbers

Tracemalloc limitations



Threading



Intercept & wrap 
threading.Lock 
instances

1 2 3
Determine if 
acquire() is to 
be intercepted

Register 
acquire() and 
release() 
timings and stack 
traces



Lock Acquire Wait Time Total



Exporting and 
using the data



– cProfile → custom format

– Callgrind supports in some 
tools

– Many Python profilers focus 
on their output

– pprof to the rescue

There is no real 
standard.



Based on protobuf

Fast + schema

Aggregates data

Can compute KPM

Space efficient

String pool + 
gzip

~20 KB / minute / process

The pprof format



Visualization tool
– Also named pprof 🤷♂

– Fancy visualizations

– Written in Go



https://github.com/datadog/dd-trace-py

Open-source 
library 

upcoming
(Apache / BSD)

pprof



Thank you

Questions, feedback?

jd@datadoghq.com

@juldanjou

Follow me if you want to know when this gets released!


