
Production-time
Profiling for Python
Julien Danjou

FOSDEM — 1st February 2020

Julien Danjou
Staff Engineer @ Datadog

@juldanjou

https://julien.danjou.info

Forward-looking Statements
This presentation may include certain "forward-looking statements" within the meaning of Section 27A of
the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as
amended, including statements concerning our product offerings. These forward-looking statements reflect
our current views about our plans, intentions, expectations, strategies and prospects, which are based on
the information currently available to us and on assumptions we have made. Actual results may differ
materially from those described in the forward-looking statements and are subject to a variety of
assumptions, uncertainties, risks and factors that are beyond our control, including those risks detailed
under the caption "Risk Factors" and elsewhere in our Securities and Exchange Commission filings and
reports, including the final prospectus for our initial public offering filed with the Securities and Exchange
Commission on September 19, 2019, as well as future filings and reports by us. Except as required by law,
we undertake no duty or obligation to update any forward-looking statements contained in this release as a
result of new information, future events, changes in expectations or otherwise.

– What is profiling?

– CPU & Wall time profiling

– Memory profiling

– Threading profiling

– Exporting & using the data

Table of
Contents

What is profiling?

Getting frequency and
usage of your code

Deterministic
Run a scenario and meter all
execution function by function

Statistical
Sample your program periodically
to see what it is doing

Two types of profiling

Register time before
function() is called

Call function() Register time after
function() is called

Deterministic profiling

Only wall time

Granularity to the function

0–∞% overhead

Custom data format

cProfile shortcomings

Production system
=

statistical profiling

Wake up Register what the
program’s doing right

now (maybe)

Go back to sleep

Statistical profiling

Wall & CPU time

Granularity to the line

Low overhead

Can report raised exceptions

Sampling strengths

State of the art

CPU & Wall time

Sleep 10 ms.
time.sleep()

1 2 3
Get threads stacks.
sys._current_frames()

Get CPU time for
each thread.
time.pthread_getcpuclockid()

<Thread-1>
 a() myfile.py:123
 b() myfile.py:394
 c() mymodule.py:049
<Thread-2>
 d() myfile.py:123
 b() myfile.py:395

Wall
Time

CPU
Time

High Performance

~1% CPU usage @ 100 Hz
10 threads × 30 functions

Exception Profiling Limit resources usage

High performance & precision

No C profiling
(yet)

Memory

tracemalloc

time.sleep(0.01)

1 2 3
0 <= n <= 100
counter += n

if counter >= 100:
 counter -= 100
 tracemalloc.start()
else:
 tracemalloc.stop()

Allocations
Count

Allocations
Size

Overhead No thread information Only file names and
line numbers

Tracemalloc limitations

Threading

Intercept & wrap
threading.Lock
instances

1 2 3
Determine if
acquire() is to
be intercepted

Register
acquire() and
release()
timings and stack
traces

Lock Acquire Wait Time Total

Exporting and
using the data

– cProfile → custom format

– Callgrind supports in some
tools

– Many Python profilers focus
on their output

– pprof to the rescue

There is no real
standard.

Based on protobuf

Fast + schema

Aggregates data

Can compute KPM

Space efficient

String pool +
gzip

~20 KB / minute / process

The pprof format

Visualization tool
– Also named pprof 🤷♂

– Fancy visualizations

– Written in Go

https://github.com/datadog/dd-trace-py

Open-source
library

upcoming
(Apache / BSD)

pprof

Thank you

Questions, feedback?

jd@datadoghq.com

@juldanjou

Follow me if you want to know when this gets released!

