
A free toolchain for 0.01 € - computers
The free toolchain for the Padauk 8-bit microcontrollers

Philipp Klaus Krause

February 2, 2020



Table of Contents

1 The Padauk µC

2 Free Hardware

3 Small Device C Compiler

4 TODO



Table of Contents

1 The Padauk µC

2 Free Hardware

3 Small Device C Compiler

4 TODO



Padauk µC

Taiwanese manufacturer (rebrand reseller: Puolop)
Cheap (down to 0,01 €)
Low power
Accumulator-based architecture
Relatively nice architecture (similar to MCS-51)
60 B to 256 B RAM
0.5 KW to 4 KW program memory (PROM or Flash)
Few peripherals (only timer, comparator, ADC, PWM,
watchdog)
1 to 8 “Cores” (hardware threads)



Subarchitectures

subarchitecture pdk13 pdk14 pdk15 pdk16
internal name SYM_84B SYM_85A SYM_86B SYM_83A
prog. mem. width 13 14 15 16
prog. addr. bits 10 11 12 13
data addr. bits 6 7 8 9
I/O addr. bits 5 6 7 6
hardware threads 1 1 or 2 1 2, 4 or 8



Hardware Threads

Barrel processor
Per-thread state: accumulator, stack pointer, program
counter, flag register
“Core”, “processing unit”, “FPP”, “FPPA”
Lack of instruction support



PMC234 Die



Non-free Tools

Mini-C: IDE integrated with compiler/assembler/software for
writer/emulator.
Assembly with a bit of C-like syntactic sugar.
Program writer
In-circuit emulator



Free Tools

Small Device C compiler (SDCC) with assembler, linker,
simulator
Easy PDK programmer with firm- and software
development boards



Table of Contents

1 The Padauk µC

2 Free Hardware

3 Small Device C Compiler

4 TODO



Easy PDK programmer

Simple hardware usable with various OSes
Fully cupports 6 Padauk-µC so far (PMS15A, PMS150C,
PMS154B, PMS154C, PFS154, PFS173)
For 12 few more, there already is read-only support
https://github.com/free-pdk



Development Boards

Minimal boards
4 LED
Power supply via programmer, pins oder USB
https://github.com/free-pdk/f-eval-boards



Table of Contents

1 The Padauk µC

2 Free Hardware

3 Small Device C Compiler

4 TODO



What is SDCC?

C compiler (ANSI C89, ISO C99, ISO C11, ISO C2X)
Freestanding implementation or part of a hosted
implementation
Supporting tools (assembler, linker, simulator, ...)
Works on many host systems (GNU/Linux, Windows, macOS,
Hurd, OpenBSD, FreeBSD, ...)
Targets various 8-bit architectures (MCS-51, DS80C390, Z80,
Z180, eZ80 in Z80 mode, Rabbit 2000, Rabbit 3000A,
LR35902, TLCS-90, HC08, S08, STM8, pdk14, pdk15, pdk13,
PIC14, PIC16)
Has some unusual optimizations that make sense for these
targets (in particular in register allocation)
http://sdcc.sourceforge.net



SDCC for Padauk

Supports pdk13, pdk14, pdk15
Functions are non-reentrant by default (local variables at fixed
locations instead of on stack)
Via __reentrant individual functions can be made reentrant,
via --stack-auto whole translation units can be compiled as
reentrant; this comes at a significant code size and runtime
cost (e.g. 16-bit addition: 34 inst / 40 cycles vs. 6 inst / 6
cycles)
Access to I/O-registers via __sfr and __sfr16



Code size benefits of pdk15 improvements

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

dhrystone coremark stdcbench

R
el

at
iv

e 
co

de
 s

iz
e

spadd
idxsp

spadd+idxsp
sprel

spadd+sprel



Code size benefits of pdk15 improvements - all reentrant

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

dhrystone coremark stdcbench

R
el

at
iv

e 
co

de
 s

iz
e

spadd
idxsp

spadd+idxsp
sprel

spadd+sprel



Optimal Register Allocation in Polynomial Time

Register allocator based on graph-structure theory
Optimal register allocation in polynomial time
Flexible through use of cost function
Provides substantial improvements in code quality
Slow compilation for targets with many registers
Compilation speed / code quality trade-off:
–max-allocs-per-node



Regression testing

Regression testing of nightly snapshots
≈ 12000 tests compiled and executed on simulators
Tests mostly from fixed bugs and from GCC
Targets architectures: MCS-51, DS390, Z80, Z180, eZ80 in
Z80 mode, Rabbit 2000, Rabbit 3000A, LR35902, TLCS-90,
HC08, S08, STM8, pdk14, pdk15
Host OS: GNU/Linux, macOS, “Windows” (cross-compiled on
GNU/Linux, tested via wine)
Host architectures: x86, amd64, ppc, arm



LLVM+SDCC

Uses LLVM C front- and backend to produce C code to be
compiled with SDCC
Code compiled with LLVM+SDCC can be mixed with C code
compiled with SDCC
Allows languages other than C
Enables high-level optimizations
Experimental, many issues remaining



Table of Contents

1 The Padauk µC

2 Free Hardware

3 Small Device C Compiler

4 TODO



TODO

SDCC needs developers
Fix SDCC bugs
Improve SDCC further in standard compliance, optimizations,
debug info, etc
Make LLVM+SDCC useable
Improve IDE integration
Add support for more devices in Easy PDK programmer


	The Padauk µC
	Free Hardware
	Small Device C Compiler
	TODO

