Designing Hardware, Journey from Novice to Not-Bad

Ace Medlock, Kendrick Shaw, Eric Herman

2020-02-01

OpenElectronicsLab

ADS1290 breakout

Figure 2: 2012 board

- through-hole with 1 64pin QFP
- 2011-11-26 begin desgin
- 2012-01-23 boards arrive
- 2012-03-04 reading data

https://github.com/OpenElectronicsLab/ads1298-breakout

ExG Version 1

Figure 3: OpenHardwareExG in the case

 3 boards stacked, but testing of base-board hard
 example usage: http://openelectronicslab.github.io/eeg-mouse/

https://github.com/OpenElectronicsLab/OpenHardwareExG

ExG Shield

Figure 4: OpenHardwareExG Shield

designed testing, cheaper and easier for others
 made some errors and three different revs
 example usage: quantified self

https:

 $//github.com/OpenElectronicsLab/OpenHardwareExG_Shield$

Current Project: Holter Monitor

asked for advice from Humatem and received some great guidance

- special purpose
- goal of FDA or EC certification
 - EC medical device regulation is currently changing (2020) and we don't really know the process yet
 - Need to design for safety from the start: Plan to do a ground-up redesign with eye on certification once we're happy with the prototype

https:

//github.com/OpenElectronicsLab/OpenHardwareHolterMonitor

Many excellent FOSS tools to support hardware hackers

- for both hardware and firmware
- Arduino-type boards and tools lower the barrier to entry

KiCAD eeschema

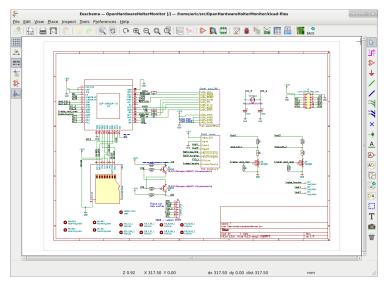


Figure 5: kicad-eeschema-screenshot.png

KICAD PCB

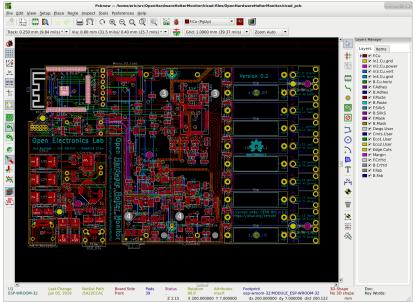


Figure 6: kicad-pcbnew-screenshot.png

Populated PCB

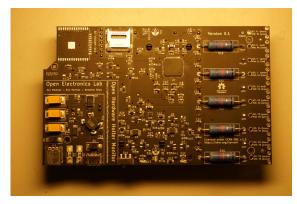


Figure 7: populated-holtermonitor_small.jpg

Arduino build environment

GetChipID Arduino 1.8.10	+ _ E ×
Eile Edit Sketch Iools Help	
	P
GetChipID	
uint64_t chipid;	-
<pre>void setup() { Serial.begin(115200); }</pre>	
<pre>void loop() { chipid=ESP.getEfuseMac();//The chip ID is essentially its MAC address Serial.printf("ESP32 Chip ID = %04X",(uint16_t)(chipid>>32));//print Serial.printf("%08X\n",(uint32_t)chipid);//print Low 4bytes.</pre>	
delay(3000);	
}	
Done uploading.	
Wrote 3072 bytes (128 compressed) at 0x00008000 in 0.0 seconds (effecti Hash of data verified.	ive 1543.7 kbit/s) [±]
Leaving Hard resetting via RTS pin	
1 ESP32 Dev	Module on /dev/ttyUSB0

Figure 8: arduino-build-screenshot.png

OpenSCAD

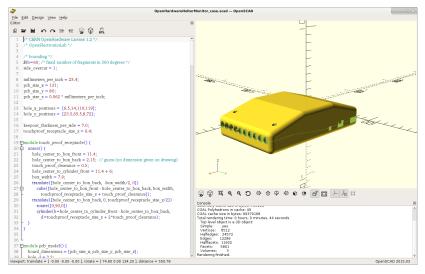


Figure 9: openscad-screenshot.png

Learning surface mount soldering

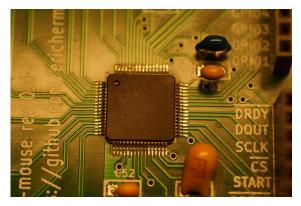


Figure 10: rev0: through-hole except the chip

Learning surface mount soldering

- "Pin sweep" method of soldering ICs
- I learned it by watching YouTube!

How to solder tiny surface mount IC chips

10,980 views • Mar 23, 2016 📫 93 📲 8 🏕 SHARE =+ SAVE •••

James Hutton 3K subscribers

SUBSCRIBE

Learning surface mount soldering

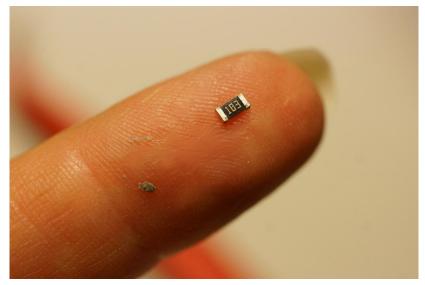


Figure 11: 0603 surface mount resistor

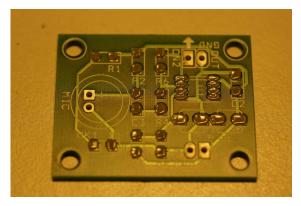


Figure 12: solder paste

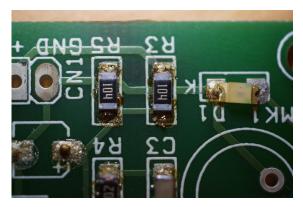


Figure 13: surface mount components soldered with solder paste

Figure 14: Solder paste under the microscope

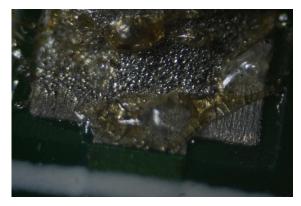


Figure 15: solder paste joint: OK

Figure 16: solder paste joint: cold solder

Soldering using a dissection scope

Figure 17: using a microscope for soldering

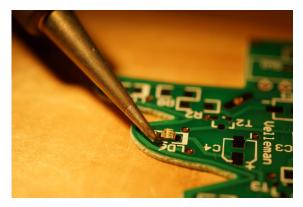


Figure 18: hand solder 01

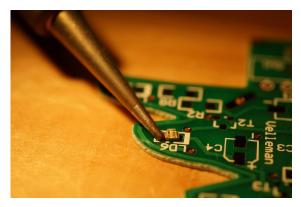


Figure 19: hand solder 02

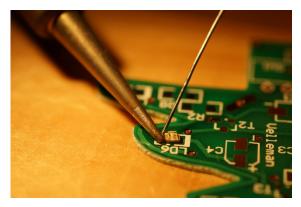


Figure 20: hand solder 03

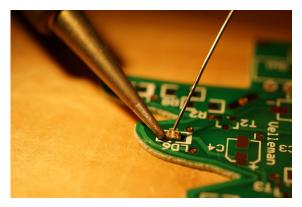


Figure 21: hand solder 04

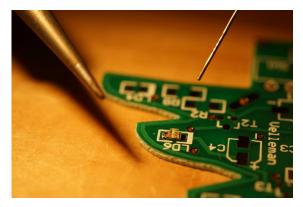


Figure 22: hand solder 05

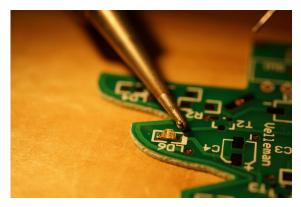


Figure 23: hand solder 06

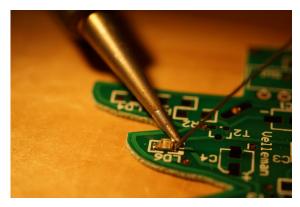


Figure 24: hand solder 07

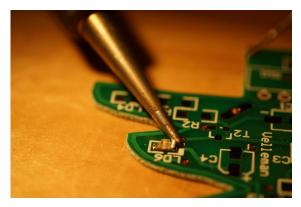


Figure 25: hand solder 08

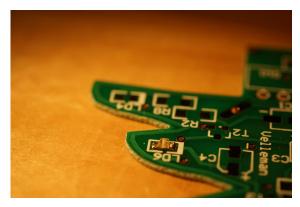


Figure 26: hand solder 09

The job of a solder joint is to conduct electricity, not to look pretty

Figure 27: ugly, but works

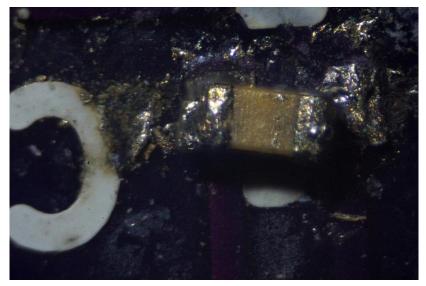
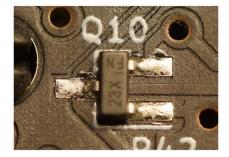
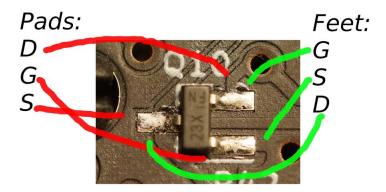




Figure 28: hand-soldered 0201 capacitor

Fixing misteaks

Fixing misteaks

Fixing mistakes

> You will make mistakes. You will be able to fix them.

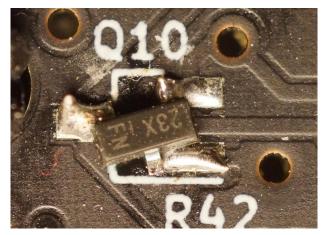


Figure 29: rotated Q10

Fixing mistakes

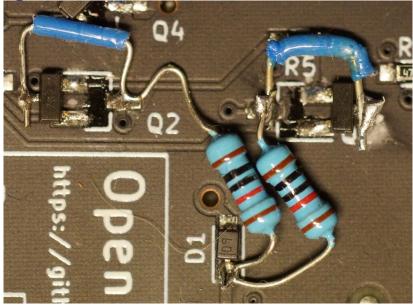


Figure 30: flipped Q1-Q2

Fixing mistakes

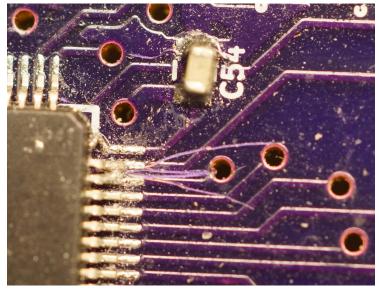


Figure 31: cut traces

Fixing mistakes

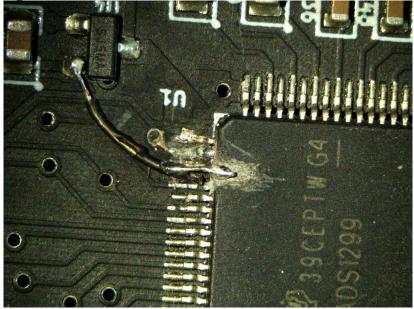


Figure 32: green wire into the chip

Safety is important, and often fairly simple

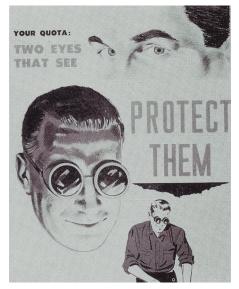
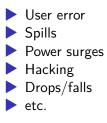
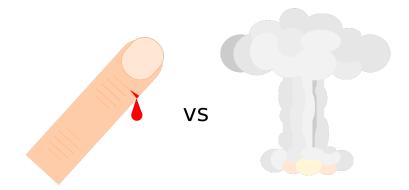




Figure 33: goggles

What could go wrong?

How serious is it

Figure 34: Paper cut vs nuclear explosion

How likely is it

Examples:

- Very likely:
 - user forgets to turn device off overnight
 - device dropped from 1 meter above ground

Very unlikely:

- user starves while using device because they forgot to eat
- device dropped out of airplane

Risk = Severity of harm * Probability of harm (e.g. ISO 14971)

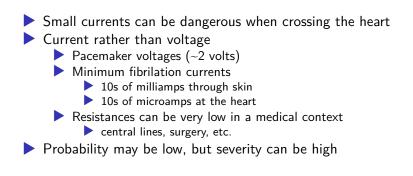
Acceptable risk

Acceptable risk varies by circumstance

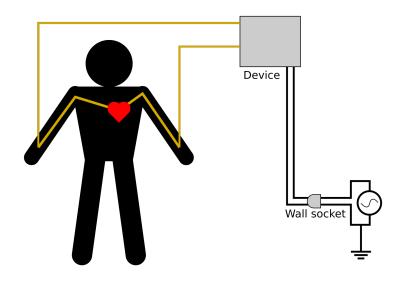
Figure 35: free climber ¹

¹Image by Heinz Hummel from Pixabay, Pixabay license

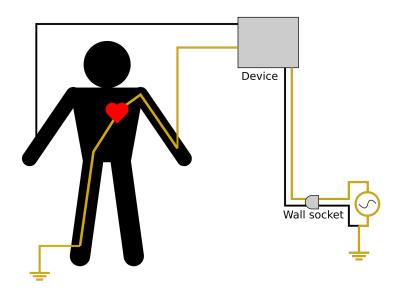
Mitigation

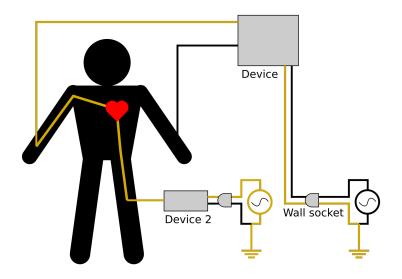

Decrease the risk of the event

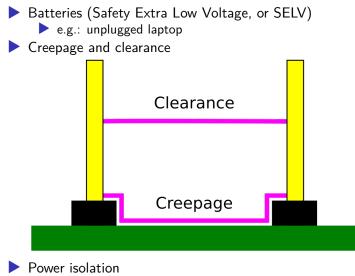
example: remove internet connectivity from a device to make it less likely to be hacked


Decrease the severity of the event

example: add a disconnection alarm to a ventilator so it fails loudly rather than quietly if it is accidentally disconnected from the patient


Example: Risk of electrical shock


Risk of shock between electrodes


Risk of shock between device and ground

Risk of shock between devices

Example Mitigation: Isolation

Data isolation

Leakage current standards

Leakage	Body	Body	Cardiac
Current		Floating	Floating
Earth	500 μA	500 μA	500 μA
Enclosure	100 μA	100 μA	100 μA
Patient	100 μA	100 μA	10 μA

Note that these are very low currents

Can only be 2-5 times larger even if component fails

Designing for failures

- Safe if any one component fails
- 2 means of patient protection
 - two layers of basic isolation vs. reinforced isolation
- Current limiting resistors on patient connections

Take home message

a little thought about safety goes a long way
great tools and resources to support you
don't be too intimidated

try
repeat
you'll improve as you go

happy hardware hacking!

References and Contacts

Tools

- https://www.arduino.cc/
- https://kicad-pcb.org/
- https://www.openscad.org/

Books

- The Art of Electronics, Horowitz and Hill
- Medical Instrumentation Aplication and Design, Webster
- SMD Soldering technique videos
 - https://www.youtube.com/watch?v=eg2hxpy-gg
 - https://www.youtube.com/watch?v=JKqgU2Hw3mY

Contact

- https://github.com/OpenElectronicsLab
- eric.herman@gmail.com
- ace.medlock@gmail.com
- kms15@case.edu