
Liquidsoap

Audio & Video Streaming Language

1 / 73

What is Liquidsoap?

2 / 73

What is Liquidsoap?
A language to create audio and video streams

3 / 73

What is Liquidsoap?
A language to create audio and video streams

myplaylist = playlist("~/radio/music.m3u")
jingles = playlist("~/radio/jingles.m3u")

radio = myplaylist
radio = random(weights = [1, 4],[jingles, radio])

output.icecast(%mp3,
 host = "localhost", port = 8000,
 password = "hackme", mount = "basic-radio",
 radio)

4 / 73

What is Liquidsoap?
A language to create audio and video streams

myplaylist = playlist("~/radio/music.m3u")
jingles = playlist("~/radio/jingles.m3u")

radio = myplaylist
radio = random(weights = [1, 4],[jingles, radio])

output.icecast(%mp3,
 host = "localhost", port = 8000,
 password = "hackme", mount = "basic-radio",
 radio)

Programming tools to help the user

5 / 73

What is Liquidsoap?
A language to create audio and video streams

myplaylist = playlist("~/radio/music.m3u")
jingles = playlist("~/radio/jingles.m3u")

radio = myplaylist
radio = random(weights = [1, 4],[jingles, radio])

output.icecast(%mp3,
 host = "localhost", port = 8000,
 password = "hackme", mount = "basic-radio",
 radio)

Programming tools to help the user

Verifications of specific properties (i.e. "Can this source fail?")

6 / 73

What is Liquidsoap?
A language to create audio and video streams

myplaylist = playlist("~/radio/music.m3u")
jingles = playlist("~/radio/jingles.m3u")

radio = myplaylist
radio = random(weights = [1, 4],[jingles, radio])

output.icecast(%mp3,
 host = "localhost", port = 8000,
 password = "hackme", mount = "basic-radio",
 radio)

Programming tools to help the user

Verifications of specific properties (i.e. "Can this source fail?")

At line 5, char 8-49:
Error 7: Invalid value:
That source is fallible

7 / 73

What is Liquidsoap?
A language to create audio and video streams

myplaylist = playlist("~/radio/music.m3u")
jingles = playlist("~/radio/jingles.m3u")
security = single("~/radio/sounds/default.mp3")

radio = myplaylist
radio = random(weights = [1, 4],[jingles, radio])
radio = fallback(track_sensitive = false, [radio, security])

output.icecast(%mp3,
 host = "localhost", port = 8000,
 password = "hackme", mount = "basic-radio",
 radio)

Programming tools to help the user

Verifications of specific properties (i.e. "Can this source fail?")

At line 5, char 8-49:
Error 7: Invalid value:
That source is fallible

8 / 73

What is Liquidsoap?
A language to create audio and video streams

myplaylist = playlist("~/radio/music.m3u")
jingles = playlist("~/radio/jingles.m3u")
security = single("~/radio/sounds/default.mp3")

radio = myplaylist
radio = random(weights = [1, 4],[jingles, radio])
radio = fallback(track_sensitive = false, [radio, security])

output.icecast(%mp3,
 host = "localhost", port = 8000,
 password = "hackme", mount = "basic-radio",
 radio)

Programming tools to help the user

Verifications of specific properties (i.e. "Can this source fail?")

At line 5, char 8-49:
Error 7: Invalid value:
That source is fallible

Static typing catered for its users (source media content, unused variables, etc..)

9 / 73

What is Liquidsoap?
A language to create audio and video streams

Dedicated time predicates: 1w12h

10 / 73

What is Liquidsoap?
A language to create audio and video streams

Dedicated time predicates: 1w12h

switch([
 ({ 20h-22h30 }, prime_time),
 ({ 1w }, monday_source),
 ({ (6w or 7w) and 0h-12h }, week_ends_mornings),
 ({ true }, default_source)
])

11 / 73

What is Liquidsoap?
A language to create audio and video streams

Dedicated time predicates: 1w12h

switch([
 ({ 20h-22h30 }, prime_time),
 ({ 1w }, monday_source),
 ({ (6w or 7w) and 0h-12h }, week_ends_mornings),
 ({ true }, default_source)
])

...

12 / 73

A little history..
Founded in 2003 by David Baelde and Samuel Mimram

13 / 73

A little history..
Founded in 2003 by David Baelde and Samuel Mimram

Savonet: SAm and daVid Ocaml NETwork 🙂

14 / 73

A little history..
Founded in 2003 by David Baelde and Samuel Mimram

Savonet: SAm and daVid Ocaml NETwork 🙂

Originally a studet project at Ecole Normale Supérieure de Lyon

15 / 73

A little history..
Founded in 2003 by David Baelde and Samuel Mimram

Savonet: SAm and daVid Ocaml NETwork 🙂

Originally a studet project at Ecole Normale Supérieure de Lyon

Purpose was to stream the music shared on the local SAMBA (windows) network to listen to music while
coding

16 / 73

A little history..
Founded in 2003 by David Baelde and Samuel Mimram

Savonet: SAm and daVid Ocaml NETwork 🙂

Originally a studet project at Ecole Normale Supérieure de Lyon

Purpose was to stream the music shared on the local SAMBA (windows) network to listen to music while
coding

Features: Indexing of shared music files, IRC bot with user-requests & Icecast streaming output

17 / 73

A little history..
Founded in 2003 by David Baelde and Samuel Mimram

Savonet: SAm and daVid Ocaml NETwork 🙂

Originally a studet project at Ecole Normale Supérieure de Lyon

Purpose was to stream the music shared on the local SAMBA (windows) network to listen to music while
coding

Features: Indexing of shared music files, IRC bot with user-requests & Icecast streaming output

Creating a new language emerged as part of the school's expected student project

18 / 73

A little history..
Founded in 2003 by David Baelde and Samuel Mimram

Savonet: SAm and daVid Ocaml NETwork 🙂

Originally a studet project at Ecole Normale Supérieure de Lyon

Purpose was to stream the music shared on the local SAMBA (windows) network to listen to music while
coding

Features: Indexing of shared music files, IRC bot with user-requests & Icecast streaming output

Creating a new language emerged as part of the school's expected student project

OCaml!

19 / 73

The liquidsoap language

20 / 73

The liquidsoap language
Scripting language

21 / 73

The liquidsoap language
Scripting language

Functional language

22 / 73

The liquidsoap language
Scripting language

Functional language

input.harbor(on_connect=callback, ...)

23 / 73

The liquidsoap language
Scripting language

Functional language

input.harbor(on_connect=callback, ...)

Static & inferred types

24 / 73

The liquidsoap language
Scripting language

Functional language

input.harbor(on_connect=callback, ...)

Static & inferred types

source(audio=2, video=0, midi=0)

25 / 73

The liquidsoap language
Scripting language

Functional language

input.harbor(on_connect=callback, ...)

Static & inferred types

source(audio=2, video=0, midi=0)

(..., format('a), source('a)) -> source('a)

26 / 73

The liquidsoap language
Scripting language

Functional language

input.harbor(on_connect=callback, ...)

Static & inferred types

source(audio=2, video=0, midi=0)

(..., format('a), source('a)) -> source('a)

Labels and optiomal parameters

27 / 73

The liquidsoap language
Scripting language

Functional language

input.harbor(on_connect=callback, ...)

Static & inferred types

source(audio=2, video=0, midi=0)

(..., format('a), source('a)) -> source('a)

Labels and optiomal parameters

def my_function(?optional_arg, ~labeled_arg, arg1, arg2) =
 ...
end

28 / 73

The liquidsoap language
Scripting language

Functional language

input.harbor(on_connect=callback, ...)

Static & inferred types

source(audio=2, video=0, midi=0)

(..., format('a), source('a)) -> source('a)

Labels and optiomal parameters

def my_function(?optional_arg, ~labeled_arg, arg1, arg2) =
 ...
end

my_function(arg1, arg2, labeled_arg="foo", optional_arg=123)
my_function(arg1, arg2, labeled_arg="foo")

29 / 73

The liquidsoap language
Scripting language:

Self-documented

30 / 73

The liquidsoap language
Scripting language:

Self-documented

% liquidsoap -h input.srt

Start a SRT agent in listener mode to receive and decode a stream.

Type: (?id : string, ?bind_address : string,
 ?clock_safe : bool, ?content_type : string,
 ?dump : string, ?max : float, ?messageapi : bool,
 ?on_connect : ((unit) -> unit),
 ?on_disconnect : (() -> unit), ?payload_size : int,
 ?port : int) -> source('a)

Category: Source / Input

Parameters:

 * id : string (default: "")
 Force the value of the source ID.

 * bind_address : string (default: "0.0.0.0")
 Address to bind on the local machine.

...

31 / 73

Some common features

32 / 73

Some common features
Large set of supported audio and video codecs

33 / 73

Some common features
Large set of supported audio and video codecs

I/O

34 / 73

Some common features
Large set of supported audio and video codecs

I/O
Alsa, portaudio, ao, etc..

35 / 73

Some common features
Large set of supported audio and video codecs

I/O
Alsa, portaudio, ao, etc..
File output

36 / 73

Some common features
Large set of supported audio and video codecs

I/O
Alsa, portaudio, ao, etc..
File output
HTTP, icecast, HLS, SRT, etc..

37 / 73

Some common features
Large set of supported audio and video codecs

I/O
Alsa, portaudio, ao, etc..
File output
HTTP, icecast, HLS, SRT, etc..
Harbor (icecast) input

38 / 73

Some common features
Large set of supported audio and video codecs

I/O
Alsa, portaudio, ao, etc..
File output
HTTP, icecast, HLS, SRT, etc..
Harbor (icecast) input
ffmpeg, gstreamer

39 / 73

Some common features
Large set of supported audio and video codecs

I/O
Alsa, portaudio, ao, etc..
File output
HTTP, icecast, HLS, SRT, etc..
Harbor (icecast) input
ffmpeg, gstreamer
Youtube, via RTMP & ffmpeg!

40 / 73

Some common features
Large set of supported audio and video codecs

I/O
Alsa, portaudio, ao, etc..
File output
HTTP, icecast, HLS, SRT, etc..
Harbor (icecast) input
ffmpeg, gstreamer
Youtube, via RTMP & ffmpeg!

Functional cross-fading

41 / 73

Some common features
Large set of supported audio and video codecs

I/O
Alsa, portaudio, ao, etc..
File output
HTTP, icecast, HLS, SRT, etc..
Harbor (icecast) input
ffmpeg, gstreamer
Youtube, via RTMP & ffmpeg!

Functional cross-fading

blank detection

42 / 73

Some common features
Large set of supported audio and video codecs

I/O
Alsa, portaudio, ao, etc..
File output
HTTP, icecast, HLS, SRT, etc..
Harbor (icecast) input
ffmpeg, gstreamer
Youtube, via RTMP & ffmpeg!

Functional cross-fading

blank detection

Ladspa, dssi, lilv & ffmpeg filters

43 / 73

Usage

44 / 73

Usage
Web radio

45 / 73

Usage
Web radio

With automated switch from playlist and live content

46 / 73

Usage
Web radio

With automated switch from playlist and live content

and user interactions

47 / 73

Usage
Web radio

With automated switch from playlist and live content

and user interactions

Normalized audio volume across tracks

48 / 73

Usage
Web radio

With automated switch from playlist and live content

and user interactions

Normalized audio volume across tracks

Also with compression, please!

49 / 73

Usage
Web radio

With automated switch from playlist and live content

and user interactions

Normalized audio volume across tracks

Also with compression, please!

Crossfade transitions

50 / 73

Usage
Web radio

With automated switch from playlist and live content

and user interactions

Normalized audio volume across tracks

Also with compression, please!

Crossfade transitions

Jingle transitions

51 / 73

Usage
Web radio

With automated switch from playlist and live content

and user interactions

Normalized audio volume across tracks

Also with compression, please!

Crossfade transitions

Jingle transitions

Output in multiple format (mp3, aac, high/low quality)

52 / 73

Usage
Web radio

With automated switch from playlist and live content

and user interactions

Normalized audio volume across tracks

Also with compression, please!

Crossfade transitions

Jingle transitions

Output in multiple format (mp3, aac, high/low quality)

To multiple destinations (icecast, HLS, etc..)

53 / 73

Usage
Web radio

With automated switch from playlist and live content

and user interactions

Normalized audio volume across tracks

Also with compression, please!

Crossfade transitions

Jingle transitions

Output in multiple format (mp3, aac, high/low quality)

To multiple destinations (icecast, HLS, etc..)

Not so easy after all!

54 / 73

Usage
Web radio

With automated switch from playlist and live content

and user interactions

Normalized audio volume across tracks

Also with compression, please!

Crossfade transitions

Jingle transitions

Output in multiple format (mp3, aac, high/low quality)

To multiple destinations (icecast, HLS, etc..)

Not so easy after all!

Wait, how about video?

55 / 73

Usage
Web radio

With automated switch from playlist and live content

and user interactions

Normalized audio volume across tracks

Also with compression, please!

Crossfade transitions

Jingle transitions

Output in multiple format (mp3, aac, high/low quality)

To multiple destinations (icecast, HLS, etc..)

Not so easy after all!

Wait, how about video?

Sam : And midi? 😅

56 / 73

Usage

Configuration

set("server.telnet", true)
enable_replaygain_metadata()

Files-based sources

files = playlist("~/radio/music.m3u")
jingles = playlist("~/radio/jingles.m3u")
files = random(weights=[1, 4],
 [jingles, files])

files = amplify(1.,override="replay_gain",
 files)

User requests

user_requests = request.queue(
 id="user_requests")
radio = fallback(track_sensitive=true,
 [user_requests, files])

Crossfade tracks

radio = crossfade(radio, smart=true)

Live source

live = input.harbor("live")

57 / 73

Usage

Configuration

set("server.telnet", true)
enable_replaygain_metadata()

Files-based sources

files = playlist("~/radio/music.m3u")
jingles = playlist("~/radio/jingles.m3u")
files = random(weights=[1, 4],
 [jingles, files])

files = amplify(1.,override="replay_gain",
 files)

User requests

user_requests = request.queue(
 id="user_requests")
radio = fallback(track_sensitive=true,
 [user_requests, files])

Crossfade tracks

radio = crossfade(radio, smart=true)

Live source

live = input.harbor("live")

Full radio

radio = fallback(track_sensitive=false,
 [live, radio])

radio = compress(radio)

Outputs

formats = [
 ("mp3-high", %mp3(bitrate=96)),
 ("mp3-low", %mp3(bitrate=128)),
 ("aac-high", %fdkaac(bitrate=64)),
 ("aac-low", %fdkaac(bitrate=32)),
]

output.file.hls("/path/to/files",
 hls_formats, radio)

def mk_iceast_output(config) =
 let (name, format) = config

 output.icecast(format,
 host = "localhost", port = 8000,
 password = "hackme", mount = name,
 radio)
end

list.iter(mk_icecast_output, formats)

58 / 73

Usage (contd.)
Smart crossfade

59 / 73

Usage (contd.)
Smart crossfade

 def transition(a,b,ma,mb,sa,sb)
 if
 a <= medium and
 b <= medium and
 abs(a - b) <= margin
 then
 log("Transition: crossed, fade-in, fade-out.")
 add(fade.out(sa),fade.in(sb))

 elsif
 # Do not fade if it's already very low.
 b >= a + margin and a <= medium and b <= high
 then
 log("Transition: crossed, no fade-out.")
 add(sa,sb)

 else
 log("No transition: just sequencing.")
 sequence([sa, sb])
 end
 end

 radio = cross(transition, radio)

60 / 73

Usage (contd.)
Clocks & latency control

61 / 73

Usage (contd.)
Clocks & latency control

Network glitches

62 / 73

Usage (contd.)
Clocks & latency control

Network glitches

Clock inconsistency

63 / 73

Usage (contd.)
Clocks & latency control

Network glitches

Clock inconsistency

input = input.alsa()

clock.assign_new(id="icecast",
 [output.icecast(%mp3,mount="blah",mksafe(buffer(input)))])

output.file(
 %mp3,"record-%Y-%m-%d-%H-%M-%S.mp3",
 input)

64 / 73

Usage (contd.)
Clocks & latency control

Network glitches

Clock inconsistency

input = input.alsa()

clock.assign_new(id="icecast",
 [output.icecast(%mp3,mount="blah",mksafe(buffer(input)))])

output.file(
 %mp3,"record-%Y-%m-%d-%H-%M-%S.mp3",
 input)

Real-time vs. not real-time

65 / 73

Usage (contd.)
Clocks & latency control

Network glitches

Clock inconsistency

input = input.alsa()

clock.assign_new(id="icecast",
 [output.icecast(%mp3,mount="blah",mksafe(buffer(input)))])

output.file(
 %mp3,"record-%Y-%m-%d-%H-%M-%S.mp3",
 input)

Real-time vs. not real-time

66 / 73

Future developments

67 / 73

Future developments
Tight integration with ffmpeg

68 / 73

Future developments
Tight integration with ffmpeg

Extensive support for input and output encoding formats

69 / 73

Future developments
Tight integration with ffmpeg

Extensive support for input and output encoding formats

Support for ffmpeg filters

70 / 73

Future developments
Tight integration with ffmpeg

Extensive support for input and output encoding formats

Support for ffmpeg filters

More support for video

71 / 73

Future developments
Tight integration with ffmpeg

Extensive support for input and output encoding formats

Support for ffmpeg filters

More support for video

Support for encoded content

72 / 73

Questions?

73 / 73

