minimalistic typed Lua is here

Hisham Muhammad
<hisham@konghq.com>

minimalism versus types

Hisham Muhammad
<hisham@konghg.com>

P »l o) 02172225

minimalistic
experimental

emerging

\/minimalistic
%xperimental
%emerging

untyped: no types at all

assembly, un(i)typed lambda calculus

typed: types exist!

string and number are different things
(evenif youcando "1" +2)

dynamically typed:

values have types, variables don't
Lua, Scheme, JavaScript, Python, Ruby, PHP, etc.

statically typed:

values have types, variables have types
C, Java, Go, C#, Rust, Haskell, etc.

Python — mypy, pytype
Ruby — Sorbet

PHP — Hack
JavaScript — TypeScript
Racket — Typed Racket
etc.

Lua?

adding types (or anything!)
makes a language larger

- conceptually
- and in implementation

adding types (or anything!)
makes a language larger

—conceptually

- and in implementation

adding types (or anything!)
makes a language larger

—conceptually

- and in implementation

if the language grows too much,
it doesn't feel like Lua anymore

if the language grows too much,
it doesn't feel like Lua anymore

if the type checker is too simplistic,
it doesn't feel like Lua anymore

but we want both:
a small language that fits in your head

a type checker that catches
when you make a silly typo

the challenge: to find the sweet spot
between minimalism and functionality

tl

minimal implementation in the Lua spirit:

Lua: 297 kB tarball
pure standard C, no dependencies

tl: single file, currently 4806 lines
pure Lua, no dependencies

H [exer
M lexer pretty-printer
M parser
AST traversal
W AST pretty-printer
“type checker
W standard library types
B oader

no dependencies:
drop tl.lua in your Lua project
and off you go

tl check file.tl —

tl gen file.tl — file.lua

tl run file.tl

two modes:
2l ("strict" mode)

dua ("lax" mode)

function f(x)
return Xx
end

local z = f(0)

function f(x: number): number
return Xx
end

local z = f(0)

tl reports
errors and unknowns
separately

type checker: the bulk of the compiler

function keys(t: {string: string}): {string}
local ks = {}
for k, v 1in pairs(t) do
table.1insert(ks, k)
end
return ks
end

types of tables

whatis a Lua table?

tables in tl;

tables in tl;

maps, like {string:boolean}

tables in tl;

maps, like {string:boolean}
array, like {string}

tables in tl;

maps, like {string:boolean}
array, like {string}
record, like Point

tables in tl;

maps, like {string:boolean}
array, like {string}
record, like Point
array-record, like Node

tables in tl;

maps, like {string:boolean}
array, like {string}
record, like Point
array-record, like Node
array-map? not yet

nominal records

Point = record
X: number

y: number
end

no inheritance or interfaces/traits
(for now?)

with dynamic types,
it's trivial to write very generic code

function keys(t: { K: 'V}): { K}
local ks = {}
for k, v 1in pairs(t) do
table.1insert(ks, k)
end
return ks
end

prioritizing practical needs
over a feature checklist

yay, types! now what?

which errors are left?

oops.lua:279: attempt to index a nil value (field '7?')
stack traceback:

oops.lua:279: in function 'oh no'

oops.lua:12: in function 'not again'

oops.lua:490: in function 'main’

[C]: 1n ?

tl (and Lua): any variable may be nil

option types?

Maybe in Haskell,
Result in Rust,
etc...

trickier for Lua:

every t[x] returns an option type? nah

~
0

...have the compiler detect it? (°*

-
p!

a8
[
{,@,A’ - 4> e,

" f-!.i\ =
\J‘I,_,Ai;r" a

Ly

: |

o [exer
M lexer pretty-printer
M parser

AST traversal
W AST pretty-printer
“typechecker
¥ flow analysis
wstandard library types
B loader

dug out of the rabbit hole!

...by the FOSDEM deadline
and by user feedback!

practical issues!

(O 11 Open + 16 Closed Author - Label - Projects - Milestones « Assignee -

(O Union types?
#40 opened 2 days ago by pdesaulniers

(0 Method definition on record imported from declaration file does not
throw an error?
#309 opened 2 days ago by pdesaulniers

(O Function overloading in record definitions
#36 opened 3 days ago by pdesaulniers

| @ How to load declaration files that do not correspond to Lua modules

#35 opened 3 days ago by hishamhm |

(0 Convenient way of generating Lua files for every tl file?
#31 opened 3 days ago by pdesaulniers

(O missing support for exported types
#20 ppened 4 days ago by hishamhm

O name idea(s)
#25 opened on Nov 24, 2019 by akavel

() Would be nice to have more info about the project and it's goals
#24 opened on Nov 22, 2019 by ryanford-frontend

@ in Lua mode, warn on assignment of literal with extra fields to a
record type

S0rt -

d1

hishamhm / tli ® Unwatch~ 10 % Star 45 YFork 5

Code (@ lssues 11 Pull requests 4 Actions Projects 0 Wik Security Insights Settings

Adding types to existing Lua modules & global il v issue |
variables? #285

(CHe[.T-Y.W pdesaulniers opened this issue 4 days ago - 5 comments

Q pdesaulniers commented 4 days ago +@ Assignees 8]

No one—assign yourself
Will tl support something equivalent to TypeScript's declaration files?

In LOVE, all of the APl is exposed through a global love table. | would like to declare all Labels e
the functions in this table so that | can call them in a type-safe manner. None yet

| would like to do the same for existing Lua libraries as well (such as Penlight).

Projects o
None yet
a hishamhm commented 4 days ago owner +{@) -
Milestone L1
Yes, | have thought about adding that at some point! This might just give me the push to No milestone
prioritize this. :)
Motifications Customize
fx Unsubscribe
a hishamhm commented 4 days ago Owner +@ - You're receiving notifications
because you're watching this
@pdesaulniers how about #30 for an initial implementation of this? repository.

Please note that for now all types need to be global so they can be used across modules

f= lirmir=aticsrn reted n 200 wihicrkh | elhenild Ay coammy 2 participants

definition files

require("socket")

when typechecking, load socket.d.tl
when running, load socket. lua

Function overloading in record definitions #36

CH«.IT-T. M pdesaulniers opened this issue 3 days ago - 4 comments - Fixed by #38

(;? pdesaulniers commented 3 days ago » edited « +@ e

Some functions in LOVE have multiple overloads. For instance, love.graphics. print.

Right now, it seems like tl only checks the last overload:

global love graphics = record
print: function(text: string, x: number, y: number, r: number, sx: number, sy: num

print: function(coloredtext: {any}, x: number, y: number, r: number, sx: number, s

end

global love = record
graphics: lowve graphics
end

require(”love")

function love.draw()
love.graphics.print("Helle lol", 160, 100)

end

main.tl:4:22: argument 1: got string "Hello lol", expected {any}

Lua has no function overloading!
but it's common to fake it

challenge:

love.graphics.print({{1,1,1,1}, "Hello",
{1,0,0,1}, " World"})

SYNOPSIS
love. graphics.print!| coloredtext, x, y, angle, sx, sy, ox, oy, kx, ky |

ARGUMENTS
table coloredtext
A table containing colors and strings to add to the object, in the form of {colorl, stringl, color?, string2, ...} .
table colorl
A table containing red, green, blue, and optional alpha components to use as a color for the next string in the table, in the form of {red, green, blue, alpha} .
string stringl
A string of text which has a color specified by the previous color,
table colorz
A table containing red, green, blue, and optional alpha components to use as a color for the next string in the table, in the form of {red, green, blue, alpha} .
string string2
A string of text which has a color specified by the previous color,
tables and strings ...
Additional colors and strings.

number x (B}

The position of the text on the x-axis.
number y (8)

The position of the text on the y-axis.
number angle ()

The orientation of the text in radians.
number sx (1)

Scale factor on the x-axis.
number sy (sx)

Scale factor on the y-axis.
number ox ()

Origin offset on the x-axis.
number oy (0)

Origin offset on the y-axis.
number kx ()

Shearing / skew factor on the x-axis.
number ky (0)

Shearing [skew factor on the y-axis.

what is the type of coloredtext?

what is the type of coloredtext?

1. any

what is the type of coloredtext?

1. any
2. table

what is the type of coloredtext?

1. any
2. table

3. {any}

what is the type of coloredtext?

1. any
2. table

3.{any}
4, {string or {number}}

what is the type of coloredtext?

1. any
2. table
3. {any}
4. {string or {number}}
5. {[1%2==1]:{number}, [1%2==0]:string}

what is the type of coloredtext?

1. any
2. table
3. {any}
4. {string or {number}}
5. {[1%2==1]:{number}, [1%2==0] :string}

6. {[1%2==1]: ({number}|len==4),
[1%2==0] :string}

what is the type of coloredtext?

1. any
2. table
3.{any}

4, {string or {number}}
5.{[1%2==1] :{number}, [1%2==0]:string}
6. {[1%2==1]: ({number} | len==4),
[1%2==0] :string}

1. ({[1%2==1]: ({number}|len==4),
[1%2==0]:string} | len%2==0)

what is the type of coloredtext?

1. any
2. table

3. {any}

4, {string or {number}}
5.{[1%2==1] :{number}, [1%2==0]:string}
6. {[1%2==1]: ({number} | len==4),
[1%2==0] :string}

1. ({[1%2==1]: ({number}|len==4),

[1%2==0] :string} |l
8. ({[1%2==1]:({[0-1.
[1%2==0] :string} |l

en%2==0)
}| len==4),
en%2==0)

what is the type of coloredtext?

1. any
2. table

3. {any}

4, {string or {number}}
5.{[1%2==1] :{number}, [1%2==0] :string}
6. {[1%2==1]: ({number} | len==4),
[1%2==0] :string}

1. ({[1%2==1]: ({number}|len==4),

[1%2==0] :string} |l

8. ({[1%2==1]:({[0-1]

[1%2==0] :string} |l

en%2==0)
}| len==4),
en%2==0)

local ColorText = record

r: number

g: number

b: number

a: number

text: string
end

function my typed print(colortext: {ColorText})

end

my typed print({
{r=1,9g=1, b=1, a =1, text = "Hello"},
{r=1,9g=0, b=0, a=0, text =" World"}

types in Lua — did they deliver?

Is it easier to maintain an application?

types in Lua — did they deliver?

Is it easier to maintain an application?
YES!

S0, in closing

http://github.com/hishamhm/tl
release 0.1.0

luarocks 1nstall tl

(still looking for a better name!)

http://github.com/hishamhm/tl

Lua and types: join us!

thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

