
BOOSTING
PERFORMANCE OF
ORDER BY LIMIT
QUERIES
Varun Gupta
Optimizer Developer
MariaDB Corporation

Handling ORDER BY with LIMIT queries

Available means to produce ordered streams:

● Use an ordered index
○ Range access
○ Ref access (but not ref-or-null)

■ Result of ref(tbl.keypart1=const) are ordered by tbl.keypart2,t.keypart3…..
○ Index scan

● Use Filesort

tbl1

Ordered
Output

Using index to produce ordered stream
● ORDER BY must use columns

from one index
● DESC is ok if present for all the

columns
● Cannot use join buffering as it

breaks the ordering
● With LIMIT, the execution stops

as soon as LIMIT records are
enumerated

tbl2 tbl3 tblN

Ordered index
 scan

tbl1

tbl2

Ordered
Output

Using filesort on first non-const table

● Filesort is used on the first
table instead of an index
scan

● Cannot use join buffering as
it breaks the ordering

● Condition on first table is
checked before filesort

● EXPLAIN shows “Using
filesort” in the first row

● With LIMIT, the execution
stops as soon as LIMIT
records are enumerated

Ordered
output tblN

Filesort

tbl1 tbl2 tblN

Temporary
table

Using filesort for entire join output

Ordered
Output

Filesort

Using filesort for entire join output

● This is a catch-all method
○ Places no limit on join order, use of join buffering etc

● LIMIT is applied only after the entire join is computed. This could be very
inefficient for smaller LIMIT.

● EXPLAIN shows “Using temporary;Using filesort” in the first row

ORDER BY with LIMIT and JOIN optimizer

Currently we have:

● Cost of sorting is not taken into account by the join planner
● LIMIT is not taken into account by the join planner
● Once the join order is fixed, we consider changing the access method on the

first table (if LIMIT is present) to produce the required ordering. This approach
is cost based.

LIMITATIONS (Example 1)

SELECT * FROM
t_fact
 JOIN dim1
 ON t_fact.dim1_id= dim1.dim1_id
ORDER BY t_fact.col1
LIMIT 1000;

EXECUTION TIME
25.289 sec

LIMITATIONS (Example 1)

SELECT * FROM
 t_fact
 STRAIGHT_JOIN dim1 on t_fact.dim1_id= dim1.dim1_id

ORDER BY t_fact.col1
LIMIT 1000;

EXECUTION TIME
0.013 sec

LIMITATIONS (Example 2)
SELECT t0.ID_t0 , t1.ID
FROM t0
 INNER JOIN t1
 ON t0.ID_t1 = t1.ID
 INNER JOIN z2
 ON t0.ID_z2 = z2.ID AND (z2.ID_LOCALITE = 1)
ORDER BY t0.d
LIMIT 10; EXECUTION TIME

5.151 sec

LIMITATIONS (Example 2)
SELECT t0.ID_t0 , t1.ID
FROM
 t0 STRAIGHT_JOIN t1
 ON t0.ID_t1 = t1.ID
 STRAIGHT_JOIN z2
 ON t0.ID_z2 = z2.ID AND (z2.ID_LOCALITE = 1)
ORDER BY t0.d
LIMIT 10; EXECUTION TIME

0.485 sec

COST BASED
OPTIMIZATION

Motivation

● Come up with a cost based optimization that would consider
○ Pushing the LIMIT down to a partial join
○ Cost of sorting

● Shortcut the join execution

Pushing the LIMIT

Pushing the limit to a partial join means reading only a fraction of records of the
join prefix that are sorted in accordance with the ORDER BY clause.

tbl1 tbl2 tbl3 tblK tblK+1 tblNtblK+2

Prefix resolves ordering

Pushing the LIMIT

Pushing the limit to a partial join means reading only a fraction of records of the
join prefix that are sorted in accordance with the ORDER BY clause.

tbl1 tbl2 tbl3 tblK tblK+1 tblN

Apply Sort Operation
Push LIMIT

tblK+2

Pushing the LIMIT

Pushing the limit to a partial join means reading only a fraction of records of the
join prefix that are sorted in accordance with the ORDER BY clause.

The fraction of records read would be:

 records= LIMIT * (cardinality(t1,t2....tk) / cardinality(t1,t2....tn))

JOIN OPTIMIZATION

● Get an estimate of the join cardinality by running the join planner
● Access methods that ensure pre-existing ordering are also taken into account

inside the join planner.

JOIN OPTIMIZATION

● For each partial join prefix that can resolve the ORDER BY clause the prefix is
extended with two options:

○ Insert the sort operation immediately and push LIMIT
○ Extend the partial join prefix and add sort operation later

● Equalities are propagated from the WHERE clause so that all join prefixes
which can resolve the ordering are taken into account.

○ Example if the ORDER BY clause is t1.a and there is an equality defined t1.a=t3.a
■ Join prefix t2, t3 => limit will be pushed
■ Join prefix t2, t1 => limit will be pushed

JOIN EXECUTION

● Materialize the prefix that resolves the ORDER BY clause
● Sort the materialized nest in accordance with the ORDER BY clause
● Read records from the the result of sorting one by one and join with the tables

in the suffix with NESTED LOOP JOIN.
● The execution stops as soon as we get LIMIT records in the output.

Tables in the prefix
tbl1 tbl2 tblM

Sort Nest

Execution path using a sort nest
● A materialized nest is a nest

whose tables are joined together
and result is put inside a
temporary table.

● Sort nest is a materialized nest
which can be sorted.

● After the sort-nest is filled, this
table is passed to filesort()

● Join buffering is allowed for the
tables in the prefix

● Conditions that depend only on
the tables of the prefix are
checked before sorting

Filesort
output

 tblM+1 tblM+2 tblN

Ordered
Output

Execution path using a sort nest
● Cannot use join buffering after the

sort nest is formed
● As soon as the LIMIT records are

found the join execution stops

 Tables in Suffix

SELECT * FROM customer, orders, lineitem, nation
WHERE c_custkey = o_custkey AND
 l_orderkey = o_orderkey AND
 o_orderdate >= '1993-10-01' AND
 o_orderdate < '1994-01-01' AND

 l_returnflag = 'R' AND c_nationkey = n_nationkey
ORDER BY c_acctbal, n_name
LIMIT 10;

EXAMPLES

SELECT * FROM customer, orders, lineitem, nation
WHERE c_custkey = o_custkey AND
 l_orderkey = o_orderkey AND
 o_orderdate >= '1993-10-01' AND
 o_orderdate < '1994-01-01' AND

 l_returnflag = 'R' AND c_nationkey = n_nationkey
ORDER BY c_acctbal, n_name
LIMIT 10;

EXAMPLES

SELECT * FROM
t_fact
 JOIN dim1
 ON t_fact.dim1_id= dim1.dim1_id
ORDER BY t_fact.col1
LIMIT 1000;

EXAMPLES

SELECT * FROM
t_fact
 JOIN dim1
 ON t_fact.dim1_id= dim1.dim1_id
ORDER BY t_fact.col1
LIMIT 1000;

EXAMPLES

EXECUTION TIME
0.013 sec

Speedup
1900x

SELECT *
FROM customer, nation
WHERE c_nationkey=n_nationkey AND
 n_name in ('USA','Germany','FRANCE','Belgium')
ORDER BY c_acctbal
LIMIT 10;

EXAMPLES

SELECT *
FROM customer, nation
WHERE c_nationkey=n_nationkey AND
 n_name in ('USA','Germany','FRANCE','Belgium')
ORDER BY c_acctbal
LIMIT 10;

EXAMPLES

EXECUTION TIME
0.002 sec

Speedup
43x

Limitations

● Depends heavily on the SELECTIVITY of the conditions
○ Use histograms to provide selectivities
○ Few predicates selectivity is unknown

■ Example: t1.a < t2.b

● Estimate of join cardinality are very pessimistic.

THANK YOU!

