
Magic Castle

Terraforming the Cloud for HPC
Félix-Antoine Fortin, FOSDEM20

Why are there more wizards in
Harry Potter than in
Lord of the Rings?

Context

Canada Digital Research Infrastructure

Education and Training in Compute Canada

● Over 150 workshops / year
● Most workshops use the

HPC software environment
● HPC clusters require an

account
● Account creation process

can take a few days

Could we replicate the HPC
environment for training?

So what is the difference between HP and LotR?

?

So what is the difference between HP and LotR?

Wizardry Schools

Proposal

HPC Wizard Tower by
Simon Guilbault

demo

CC Wizard: Magic Castle Voice Assistant

CC Wizard: Magic Castle Voice Assistant

Magic Castle

Open source project that instantiates a Compute Canada
cluster replica in any major cloud with Terraform and Puppet

● Create instances
○ Management nodes
○ Login nodes
○ Compute nodes

● Create volumes, network, network acls
● Create certificates, dns records, passwords
● Configuration done via input parameters

https://github.com/computecanada/magic_castle

https://github.com/computecanada/magic_castle

Terraform

● Tool for building,
changing, and versioning
infrastructure

● Infrastructure is
described using a
high-level configuration
syntax.

● Create resources that
can then be setup by a
config management tool.

● Config management tool
used for deploying,
configuring and managing
servers.

● Define configurations
for each host

● Continuously check
whether the required
configuration is in
place and is not altered

Puppet

Overview of a Magic Castle Release

Magic Castle

provider*

main.tf

data.tf

variables.tf

output.tf

infrastructure.tf

cloud-init mgmt.yaml

puppet.yaml

provider.tf

*could be any in [aws, azure, gcp, openstack, ovh]

Infrastructure

Overview of a Magic Castle Release

Magic Castle

provider*

main.tf

data.tf

variables.tf

output.tf

infrastructure.tf

cloud-init mgmt.yaml

puppet.yaml

provider.tf

*could be any in [aws, azure, gcp, openstack, ovh]

Architecture

Architecture - login nodes

Architecture - management nodes

Architecture - compute nodes

Main Interface

Overview of a Magic Castle Release

Magic Castle

provider*

main.tf

data.tf

variables.tf

output.tf

infrastructure.tf

cloud-init mgmt.yaml

puppet.yaml

provider.tf

*could be any in [aws, azure, gcp, openstack, ovh]

Magic Castle Terraform Main Module

4 sections

1. Cloud provider selection
2. Infrastructure customization
3. Cloud Provider specifics inputs
4. DNS Configuration (optional)

MC Module - 1. source

source = "./provider"

 cluster_name = "fosdem"
 domain = "computecanada.dev"
 image = "CentOS-7-x64-2019-07"
 nb_users = 100
 public_keys = [file("~/.ssh/id.pub")]

MC Module - 2.1 Infrastructure customization

MC Module - 2.2 Instance definition

 instances = {
 mgmt = { type = "p4-6gb", count = 1 },
 login = { type = "p2-3gb", count = 1 },
 node = { type = "p2-3gb", count = 1 }
 }

MC Module - 2.3 Storage definition

 storage = {
 type = "nfs"
 home_size = 100
 project_size = 50
 scratch_size = 50
 }

MC Module - 3. Cloud Provider Specific Inputs

Examples:

● OpenStack list of floating ips
● Google GPU attachment for compute nodes
● AWS / Azure / Google Cloud region

MC Module - 4. DNS Configuration (optional)

 source = "./dns/cloudflare"
 name = module.provider.cluster_name
 domain = module.provider.domain
 email = "you@example.com"
 public_ip = module.provider.ip
 rsa_public_key = module.provider.rsa_public_key
 sudoer_username = module.provider.sudoer_username

Apply Plan

$ terraform apply

Apply complete! Resources: 30 added, 0 changed, 0 destroyed.

Outputs:

admin_username = centos
guest_passwd = **redacted**
guest_usernames = user[01-10]
hostnames = [pirate.calculquebec.cloud, pirate1.calculquebec.cloud]
public_ip = [206.12.90.97]

Challenges: Infrastructure as Code

● Designing the main user interface that would limit
the references to a provider specific
implementation / API.

● Terraform configuration language tends to favor
repetition over re-use of code.

● Regrouping every components that are common amongst
providers

Provisioning

Overview of a Magic Castle Release

Magic Castle

provider*

main.tf

data.tf

variables.tf

output.tf

infrastructure.tf

cloud-init mgmt.yaml

puppet.yaml

provider.tf

*could be any in [aws, azure, gcp, openstack, ovh]

Bootstrap Puppet

1. Inject data from TF

2. Upgrade CentOS

3. Install Puppet rpms

4. Configure Puppet

certificates

5. Setup host

configuration

login1

node1 node2

mgmt1

node3 node4 node5

node6

Provisioning with Puppet and Consul

Challenges: Provisioning

● Every steps of the provisioning need to work
without human intervention.

● Once provisioned, the cluster need to stay healthy
on itself - users are not necessarily sys admins.

● Provisioning both master and slave services without
proper syncing mechanism.

Software

Batteries Included

● FreeIPA
○ Kerberos
○ BIND
○ 389 DS LDAP

● NFS
● Slurm
● Globus Endpoint
● JupyterHub with BatchSpawner
● Compute Canada CVMFS
● LMOD

Compute Canada Software Stack - CVMFS

● CernVM File System (CVMFS) provides a scalable,
reliable and low-maintenance software
distribution service;

● Compute Canada CVMFS repo:
○ 600+ scientific applications
○ 4,000+ permutations of

version/arch/toolchain
○ All compiled with EasyBuild

● Available from anywhere
● PEARC19 paper

https://docs.computecanada.ca/wiki/Available_software
https://github.com/easybuilders/easybuild-easyconfigs
https://ssl.linklings.net/conferences/pearc/pearc19_program/views/includes/files/pap139s3-file1.pdf

Key Takeaways

1. Terraform can be used to build complex
things and modules simplify that
complexity.

2. Magic Castle is a teaching and
development meta-platform for HPC.

Magic Castle Replicates a Compute Canada Cluster in 20 min.

Questions ?

