Thorsten Leemhuis

The Linux Kernel:
We have to finish this
thing one day ;)

Solving big problems in small
steps for more than two decades

twentieth
(F)OSDEM

already?
time flies...

big round of applause please:

for organizers and all

other volunteers!

you made and make this great
conference happen! many thx!

warning: this talk is part
of the history track

but no, won't be a

boring history class
| promise!

everything | mention Is
Kinda relevant for today
and tomorrow

there will be a moral of
the story in the end

So let's get started...

= the stage =

the first (F)OSDEM
happened in 2001

Linux 2.4 had just
been released

had about all Important
features It needed
back then

all needed to conquer the world!

proper Posix support
X was running (0.95)
arch portability (1.2 & 2.0)
SMP (2.0)

proper performance
this and many other important things

since then it got tons of

Improvements...

this talk will only give a glimpse into
what happened

= growing up =

2.4 likely would not run
too well on today's
computers

due to missing drivers,
obviously, but also...

numbers of CPU cores
would be problematic

back then, uniprocessor

systems were the norm

today, we have CPUs with
12 or 16 cores not that expensive

and even smartphones often have at least four cores

Linux was SMP capable
since 2.0 (Jun 1996)

was realized with the help
of a big hammer

Big Kernel Lock / BKL

only one CPU core is allowed to
execute kernel code at any time

with obvious performance impact ;-)

finer graded locking
followed In 2.2

even more ih 2.4

that made Linux

better at scaling

still: in the 2.4.x days, other
Unixes were known to scale better

by 2.6 (Dec 2003):

Linux got thousands of
finer-grained locks

LW ilf‘ Content p Edition p

In Z.Z, and Iirom tnat to 1naiviaual queue
locks in 2.6. The kernel now has thousands of

IJa:CANIsome people had assumed that the
BKL would be gone by 2.6}

As it turns out, there are still over 500

lock kernel() calls in the 2.0.6 kernel. For the

https://lwn.net/Articles/86859/ (May 2004)

2.6.6 still had about 500
lock_kernel() calls :-/

many more steps where
needed and taken

". Big kernel lock
'nEt The Big Kernel Lock lives on (May 26, 2004)
el le E-lq Kernel SL-'I'I'ldPIh'DI e? (September 15, 2004)
News from the source e big kernel lock, and 32-bit compatibility (December 15, 2004)
> r'_"i.. of i m tl() l]rlnlldl’"ir 18, 2005)

Content e big kernel lock strikes again (May 13, 2008)
Weekly Edition ["«JH HLLJ—J}I 2 (May 21, 2008) -
Archives The BKL end game l__I‘»ian,h 30, 2010)
Search Might 2.6.35 l:rE BKL free? (April 27, 2010)
Varne] BEL-free 1n / (mavbe) [Heptemher 20, 2010)
Security Shielding driver dlltl‘ll_ll s from locking (October 20, 2010)

S KS2010: Lightning_talks (November 2, 2010)
Distributions The real BKL end game (January 26, Eﬂl 1)
Events calendar

Unread comments big.LITTLE
S Linux support for ARM big.LITTLE (February 15, 2012)

LWN FAQ A big.LITTLE scheduler update (June 12, 2012)

. B "
=LY O o n] s T Ll T aT=]

https://lwn.net/Kernel/Index/#Big_kernel_lock

Linux finally got rid of
the BKL In 2011

after about 15 years

thx to heroic efforts by

various developers

esp. Arnd Bergmann, who took on
the task of eliminating the BKL
entirely!

the BKL might be history, but...

scalablility 1Is something
still being worked on

Mews from the source

Content

Weekly Edition
Archives

Search

Kernel

security
Distributions
Events calendar

Unread comments

LWN FAQ
Write for us

hreads 1;*1].:111 lﬂ '{JEI"]I
h“’i"tlﬂ" Sc nhljlllh (September 9, 2007)
oward better direct 1/0 scalability (March 31, 2008)
The state of the pa
The lockless page cache (July 29, 2008)
Tangled up in threads (August 19, 2008)
K52009: How Google uses Linux (October 21, 2009)
JLS: Increasing VFS scalability (November 3, 2009)
Big reader locks (March 16, Eﬂlfj_}
CPUS*PIDS = mess (April 27, 2010)
'I”.il‘u- h]lllﬁn f]li-' 0))1 LlIlll-. H:'iuquat 18,
/ ._ .6.36 (August 24, 2010)
L}IIPIJI'ILT 1]'1“Li{:' SC r11c1|'l|1|[.‘|.-’]m’r: hv:'._ H_JLtnhPr 20, 2010)
Resolvin q he inode s
ES2010:

2010)

3. 2010)
¢ (Dec ember 14,

’I.Ilﬂ'l

'[Fl..:il
LﬂEﬂﬂhﬂnu__ELLhﬂJJ“ﬁJuLLHLJEﬂﬂtﬂhﬂfga
Revisiting CPU hotplug locking (October 16,
Scalability techniques (October 29, 2013)
Memory-management scalability (March 13,

2013)
2013)

2015)

https://lwn.net/Kernel/Index/#Scalability

put scalability patches (June 17, 2008)

] l’UrtnhF-I 26, 2010)

many small
Improvements over time

never ending story

guite a few mm optimizations
lately

new scheduler load balancing
core in Linux 5.5

scheduling for asymmetric
systems got improved recently

most people do not
notice any of this

mostly flies under the radar

thx to all these small steps

Linux IS and stays
one of the best scaling
OS kernels

= being a good host =

getting rid of the BKL
was one of the first big

achievements
reached in many small steps

something everybody
worked towards

not always like that

more often, there Is

some competition
which can lead to interesting results

something important today was
absent in the early FOSDEM days:

builtin virtualization
capabillities

In the mid 2000s:

virtualization with

X86 Linux got famous

Xen (~2005) made it popular
and x86 processors started getting
virtualization capabilities (2006)

Xen looked like the
obvious and fitting

solution the Linux world

one that everyone seemed
to agree on

only problem:

support for running as
Host (DomO0) or Guest
(DomU) was out-of-tree

and Xen was a Kernel
underneath the Linux
kernel

then suddenly, out of nowhere,
In Oct 2006:

KVM

merged already Iinto 2.6.20
In Feb 2007

because it was so small

In the beginning compared to Xen

worse performance,
less features,
CPU support required

a toy?

KVM was quickly

Improved In small steps

various people and companies made
it better and better

a we know today:

turned out to be

a game changer

used basically everywhere these
days and made Linux rule the cloud

Xen still around

DomO and DomU support only
merged in 3.0 days (2011!)
and small when compared to KVM

why did KVM succeed?

some might say:

because It took
Xensource too long to

upstream their code

definitely a factor, but | doubt it
would have changed much

the real reason: K\VM had a better,
more flexible, and future-proof design

bullt Into LiInux, not
underneath it

reuse things already there

that suited Linux more
and left it in control

which obviously is in the interest of
Linux developers

that's why a lot of
people were
willing to help

which in the end resulted
In a better solution

history lesson relevant today, as
every now and then we have

similar situations like
Xen vs KVM

DPDK (Data Plane

Development Kit)

a technique to make network
packages bypass the Linux kernel

Linux developers started
to fight back

with the eXpress Data Path (XDP),
whereupon the
AF_XDP socket (XSK) builds

seems XDP & AF XDP
can mostly keep up with
DPDK these days

likely more future proof

another similar situation

Asynchronous I/O (AlIO)

common In the Windows world,
unusual in Linux

these days
o uring finally brings
proper AlO to Linux

an answer to the SPDK

Storage Performance Development
Kit — a I/O bypass technique that
started to gain territory

Martin Thompson

SSDs are getting crazy performance. We so need async
|O to overcome the syscall overhead.

o = SAMSUNG | |
3 -'ﬁ"ﬁ'-llli" "

Samsung Embraces PCle 4.0 in Upcoming 980 PRO S5D

https://twitter.com/mjpt777/status/1215209572681515008

just as KVM:

both XDP/AF XDP and

|0_uring started small

and got and get improved
In small steps

= hosting differently =

another thing Linux still lacked during
the early days of FOSDEM

support for Containers

other Unixes supported them already

FreeBSD jalls (1999),
Solaris Zones (2004)

Linux containers only
became famous ~2014

so why did It
take so long?

kernel simply lacked

required features

Impossible to build something like
Jalls or Zones easily & reliable

features got built,
one step at a time

took years...

some for exactly this

LUSEe CasSe
various namespaces (2002 - how)

some for nearly this

USe CasSe
cgroups (2007)

(initially often used for Virtualization with KVM)

some for different

USE CaSES

capabillities (~2003),
seccomp (2005),

Docker combined
features In a new, more
attractive way

...and made LInux

containers popular

these small steps thus In the end
changed the computer world

funny detail:

LXC was designed to
become the preferred
container solution

Virtuozzo/OpenVZ
became small; Linux-
Vserver nearly forgotten

they came earlier, but
used out-of-tree patches

LXC still around, but not
as big as Docker

ChromeQOS and Canonical use it

Imagine for a moment

what If just one
company had been
working towards LXC?

might have been
a pretty bad return of
Investment...

those things show companies

Investing money Into
developing complex new
features bears risks...

a problem for the kernel, but still

Linux, the OS, got a
better and more
flexible solution

thx to the small steps

as they lead to features that Docker
could combine in new, attractive way

= unexpected, but
welcomed surprise =

docker shows:

sometimes things surface

nobody aimed for

thx to kernel improvements in small
steps, that lead to individual features
you can recombine In various ways

Linux recently started a
trip Into the unknown

since ~2014 and 3.15+

people improved the

Berkeley Packet Filter

(BPF, these days often
called Classic BPF/cBPF)

the In-kernel mini-VM

(like a Java VM,
not an emulated computer)

tcpdump relied on it to
only get the packets It
was Interested In

for performance reasons

(copying everything over to userland first is way too much work...)

Improved cBPF

got called eBPF
called BPF for short these says :@

faster and much more
powerful VM

run small programs

IN kernel mode

20 years ago, this idea would likely
have been shot down immediately

network devs scratched
itches with eBPF

and improved it again and again

XDP & AF XDP
build upon it

other kernel subsystems
started to use It, too

and more and more will soon

""i LWN
"% .net

e

MNews from the source

Content
Weekly Edition
Archives
Search

Kernel

Jpe } Al SU = PJLE BISI S ; a LU
What is rather more difficult is moving information
between operations. In Metzmacher's case, he would like
to call openat() asynchronously, then submit I/O operations
on the resulting file descriptor without waiting for the
open to complete.

It turns out that there is a plan for this: inevitably it calls
for BRUEIIN ISR e @E18E to make the connection
from one operation to the next. The ability to run bits of
code in the kernel at appropriate places in a chain of
asynchronous operations would clearly open up a number

= " T (I =] -
[L] = L - - = 5 e e] [] = =) - =

https://lwn.net/Articles/810414/

eBPF still gets improved a lot
with each new version

starts to change the
kernel fundamentally

LInux gains more
aspects of a microkernel

that's what Europe's
biggest computer

magazine wrote
the German c't magazine

magazin fir
computer
technik .1

Gratis- Bordmittel aktivieren und optimieren

Windows absichern

Virenschutz, Privatsphare, Extra-Schutz fiir unterwegs

Kfz-Diagnose, Fahrtenbuch, Notruf, Hotspot

0BD2-Dongles: Niitzliche Spione

Profi-Ger&te mit 15 und 17 Zoll

Erste Notebooks mit Hexa-Core

ih'l Turio LEM: NBase T Switchs
+ Liiferloss Wind-P{ mi Powe

1€ST i rsdeviiy -y
- Bandwerker Hasdy Cat 361

Desinfec't: Fotos und andere Daten retten
Webdienste per REST anzapfen
Flexible Heimautomation mit Node-Red

Fotos optimieren mit Gimp 2.10

Luxus-Boards fiir AMD Ryzen

Vollausstattung fiir Gamer, Ubertakter und Kreative

Hirder gl | s Firde ol Foddn ik

Flexibler
filtern

Neue Firewall-Technik flr Linux -
bringt Elemente von Minmkarnf

Deaw LI E laahbltaina
Firssal|-Tachaik, bad dav Tur Laul rait
mia Egeac Bine iEeater Cod o den Neta-

v vk e i ot Tum skchesan und
[diznss Cadan
bt Ll i e e b s b ul e e o merssn.
i dipry K rrv | g B Bl by v e il
bdriate.

Dn = Augmi o naarioic Lines-Krmsl 4,16
bt £ il Teibe den Bpllier, aner moic
Faler Filta Techsak fis Firewalh Al s i
ot i e wdiing s i) L L [P e i e
B b b Kt Hioow s BT aadl e
Sglch dm Untevbas arwrwon, don das sh-
b harm e Gptabios e wr i o agreanios hch-
T ger morrem. s el e Seethah wohrale rmas-
chen. Noch kg Beve Sl sberinwenes Ferme
dern ben & 1K wurden mur Truke den Funcdamssin
ebegt. Dras bt ders cive ¢ mmorsed s b i Lasii
et] i et oo | o iy il sl vl
Feelie . ded prinrepe] e Mo Lirks i maig in
der An vion hlioroleme bs armdglaia

Genau passender Code
B r Chous von Bplier: D Enbscbetlang aber dic
Il rdbubang voe Mt rwerkpal cie n eriolgt dusch
kel cresgars Frogo mmonde, dmdee Kereed
ot e BIF srendEhu £ Dbl handed ounich om
e P s abuiri bt e Vo d Islachdinee die ey
Singssirmpher gesricha kst o pemee vom , NET oder
Eva e Wl st aish g BFF ik an nt, o of
i fm e e e mis e Berle by Paslis)
Filier {BI¥ Fhorvergogangon isl; mil thm b dr
ki olic used borests anvicke n Stdlon de s Kermdh
pereziaic EPF abor Lnm nech ciwas peemein
[ker BIF-Progpramescod ¢ aum Fillem wen
e tirmrs bepa bt it ol o Bl T ey i Tiar e
peinsp ket A ol narpen mape schne dem

38

Ehae rirdumiont Vernsvsgangen am Code und
wyrupnachi, Chvorbisd o ve mindoe. Tumii der
Froveeusr den BPV-Caode meglichat sqhmall
weslubue, ubgreria der Kemil thn s gang
rn Prorevior- A rchaw khares nioch g Juit- i
Tasie (JiThan Maschisenboalehle. Duriber bk
nies hann dee By flver dea Merrwes e ikie b
schion Beim ¢ Xprces Data Path CSDE alsgiei
ren) der BPF-Cade knn Jdee Faliete dadinth
sdhuien biind nech Bl g daich de Mepwerl
hardwane vowar beiten, bvoe der mbchitigen
und daheririgees Netramksiack ven Lisus
ubrnammi.

Prerch d e end srade e Vo el verypnehl
der nowe Anssie, cifinninr oo s om s S
b L g v B ol il STl e e i

sabior des MetBlee Sibvabasis, [he wl

ETTRTE N P TTY. e F T B [P T |
e e Pale Falbe s e e Be . Al be e
des Hegolusires mms der Cod o dsher sch sl
Dvrniaale s prlnd wrin, dee bl wrsemde i
Hrgeln gar reche potnm. Dhas machi don Cesde-
piladl krsmsplex, schlic Bach bicket dee Neiflicram
mens vk Sldglichboien, von de en Fircsallh
mienl iver cifes Brichal milzen

Userspace -Hellerleln
Wiy Ui i gl e boew v aboey o hy Frabnand s
mirik, devin in & 1R Sossen badiglah Voda e
b eim Sk achafon cine Eafrmbrekior, mil dar
der Keenel den Filieroods lokal o racegen well
I orfoediert iz bomple am Ubonictinngs
vorgang, dsher moelien &c Entmachler &0 daro
nitgen Fonbiswres machi m Code schen, deo
i Kewved-Re b & gl hn wand. Daes s
e aely dohe e mhminias b Ko mel- Pan ko
e, wollem oo e Anliga e ahed a o n kil an
‘W loreuge delegeenen, die wnabhldagg vom
Eonel enbw kel werde nued sl monmualks Lo
wrndungon lanfe

[k Mogummirer baben dsher far dem
Eplicr cinm Pwisthorwog powkaffim: Erwci
berumg am Lher Mode Holger (UMHFund Me-
dadeCoxle, wm e Kemel-Chaclien belliepe nde

o' O, Haf 6

Disclaimer: it was
me who wrote that ;-)

QhLWN knurd | Log out | [Renew]

L] L

—— Kernel regression tracking, part 2

ews from the source
Content By Jonathan Corbet The tracking of kernel regressions was discussed at the 2017 kernel
Weekly Edition November 6, 2017 Summit; the topic made a second appearance at the first-ever Maintainer:
Archives S — Summit two days later. This session was partly a repeat of what came
Search 2017 Maintainers Summit before for the benefit of those (including Linus Torvalds) who weren't at
Kernel the first discussion, but some new ground was covered as well.
Security

Thorsten Leemhuis started with a reprise of the Kernel Summit discussion, noting that he has been doing
regression tracking for the last year and has found it to be rather harder than he had expected. The core
of the problem, he said, is that nobody tells him anything about outstanding regressions or the progress
that has been made in fixing them, forcing him to dig through the lists to discover that information on his
own. He had, though, come to a few conclusions on how he wants to proceed.

Distributions
Events calendar
Unread comments

LWN FAQ

Write for us First, he will try again to establish the use of special tags to identify regressions. His first attempt had

Fdition failed to gain traction, but he agreed that he perhaps had not tried hard enough to publicize the scheme
Return to the and get developers to use it. He will be looking into using the kernel Bugzilla again, even though it still
Front page seems like unpleasant work to him. He'll try to improve the documentation of how regressions should be

tracked and handled. There is a plan to create a new mailing list on
vger.kernel.org, with the idea that regression reports would be copied there. He
will put more effort into poking maintainers about open regressions.

The discussion quickly turned to the problem (as seen by some) of the many
kernel subsystems that do not use the kernel.org Bugzilla instance for tracking
bugs. Peter Anvin said that many developers don't see much value in that
system. Reported bugs tend to say something like "my laptop doesn't boot" with
no further information; that tends not to be useful for the identification of any
actual bugs. Beyvond that, many bugs reported against the core kernel or x86
architecture turn out to be driver bugs in the end.

Users, it was suggested, should be explicitly directed to the mailing lists when

others compared It to
microkernels, too

LWN 8,

net * Content p Edition p

knurd | Log out | (Subscriber)

Bpfilter (and user-mode blobs) for 4.18

By Jonathan Corbet | February, the bpfilter mechanism was first posted to the
May 30, 2018 mailing lists. Bpfilter is meant to be a replacement for the
current in-kernel firewall/packet-filtering code. It provides little
functionality itself; instead, it creates a set of hooks that can run BPF programs to make
the packet-filtering decisions. A version of that patch set has been merged into the net-
next tree for 4.18. It will not be replacing any existing packet filters in its current form,
but it does feature a significant change to one of its more controversial features: the new
user-mode helper mechanism.

[:4]

The replacement of netfilter, even if it happens as expected, will take years to play out,
but we may see a number of interesting uses of the new user-mode helper mechanism
before then. The kernel has just gained a way to easily sandbox code that is carrying out
complex tasks and which does not need to be running in a privileged mode; it doesn't take
much effort to think of other settings where this ability could be used to isolate scary
code.

Tweet

& Steven Rostedt

BPF will replace Linux #kr2019

11:06 AM - Sep 26, 2019 - Twitter for Android

https://twitter.com/srostedt/status/1177147373283418112

Toke Hgiland-Jergensen @toke_dk - Dec 14, 2019
Another step on the path towards Linux becoming a BPF-powered
microkernel? Fascinating to watch!

ﬂ Brendan Gregg @brendangregg - Dec 14, 2019

Facebook's Martin KaFai Lau has developed BPF STRUCT_OPS to allow
implementing tcp_congestion_ops (and more) in BPF. marc.info
{?l=linux-netde...

¥ 15

https:/twitter.com/toke_dk/status/1205824686426378240

maybe the beginning or
middle of a small
revolution

makes Linux more error-resistant,
flexible, and powerful

and most people don't
notice anything

happening In
a lot of small steps

= longstanding wishes =

another area where

Linux was behind

from the early FOSDEM days
until recently

a proper tracing solution

similar to DTrace
published 2005, built for Solaris

Linux finally got something better
quite recently:

BCC and bpftrace

www.brendangregg.com/blog/2018-10-08/dtrace-for-linux-2018.html|

called "DTrace 2.0" by
Brendan Gregg

"one of the leading experts
on DTrace" (Wikipedia)

BCC and bpftrace can
do more than DTrace

pretty cool, see Brendan website, his
talks, or his book

www.brendangregg.com

BPF Performance Tools (book)

This is the official site for the book BPF Performance Tools: Linux System and Application
Observability, published by Addison Wesley (2019). This book can help you get the most out of your BI}I;‘
systems and applications, helping you improve performance, reduce costs, and solve software issues,
Here I'll describe the book, link to related content, and list errata and updates. I}H'[”””il] I [.{\ T{ H }l%

-

The book is available on Amazon.com (paperback, Kindle), InformIT (paperback, PDF, etc), and Linux Syster -
Safari (here and here). The paper book was released in December 2019 but sold out immediately;
more copies printed soon. I5BN-13: 97801365548.20.

The Amazon Kindle preview shows the first 100 pages out of this 880 page book.

DAL BAWED T TS A B0 A3 AN ROSIOEY

As an example new tool from the book, readahead.bt provides a new view of file system read ahead
performance: the age of read-ahead pages when they are finally referenced, and unused read-ahead
pages while tracing:

e e
| # readahead.bt
i Attaching 5 probes...

[
LE

i Readahead unused pages: 128

i Readahead used page age (ms):

1 Bage_ms:

 [1] 2435 |BERRglegeegecee

(2, 4) 8424 |RRRRRReRRCeReRRRRRRRRRRRRRRRRRRRRRdRRRRARRRRRRRRRRRE
v [4, &) 4417 |RefeflfclcefopepRprpRpRRaRg

+ [8, 18) 7680 |RPRRglededecleRRRRRRRRRARRRRRRRRRRdReRRRRRRRRR

+ [16, 32) 4352 |eegeecededegRpdadadapaRaas

i [32, 64)

: [64, 128)

i [128, 256)

= HE - 5 H i | O
...... = &7 b g S

New tools developed for this book colored red.

[
S |

iently lonooinog T D

just like containers:

took 10 to 15 years to
build everything into the
Linux kernel

the cool thing:

happened without a
design that had exactly
BCC or bpftrace in mind

they emerged thx to evolution

various building blocks
got developed In the
past 10 to 15 years

with smaller goals

pert, ftrace, tracepoints,
Kprobes, uprobes,

Kretprobes, uprobes, ...

features someone developed to
scratch a specific itch

those are one part
of the solution;
the other:

eBPF ;-)

eBPF and tracing/perf
tools got combined

and people developed
BCC and bpftrace

and "ta ta", finally, after many years
and many small steps

Linux got a DTrace 2.0

15 years after people called for it...

= something Impossible =

Linux soon will offer an

Important new feature

one almost nobody would have
expected In the early FOSDEM days

realtime capabillities

control your Laser cutter with Linux

reminder: Realtime is primary about predictability, not performance

very vague and Kinda

crazy Idea back then
by a few people

Search

Bl o) 9:35/4526

https://youtu.be/BTak9QU6vuc0?t=512

Pkl W) 131974526

https://youtu.be/BTak9U6vuc0?t=799

still

the developers behind
the 1dea didn't give up

worked towards realizing the idea
ever since Iin small steps

they made Linux

better for all of us

realtime systems hit many
problems and scalability issues first

RT developers had
lots of body blows

one of the worst afaics:

after going 90 to 95% of
the route, they needed

money for the rest

most of those that used RT patches
didn't help much with development

luckily, the RT people were
successful

Linux Foundation helped

and founded a project
2015

soon the main trip will
finally be finished

CONFIG_PREEMPT_RT

already In mainline
but not exposed yet!

main thing missing

a printk() rework
https.//lwn.net/Articles/800946/

differences got settled recently,
just need to be implemented

looks like 1t will

be ready this year
realtime, for real, this year, to0?

describing all the steps
taken would fill hours

ﬁ Lwer"'l:]?.Fﬂltlmt ¥ j- s bo realtione 1 LUK .I' i |."I]H] 12
-.]' p— - = 5

Content
Weekly Edition
Archives

vents calendar
Unread comments

LWHN FAQ

w5 [(October 16, 2007)
Write for us

tember 1, 2008)

ee (February 16, 2009)

2010}

The future of the realtime
Healtime mainl]I1IIII|| #
[ime-kased pa t tra

Deadline 5 hl *Illl Jm

https://lwn.net/Kernel/Index/#Realtime

shows:

crazy goals that look
unreachable can be
achleved In small steps

that's how most kernel
big features evolve

as new kernel features
often are not designed
by some company

often It are individuals
that want to realize
an idea or a dream

they might have to
(ab)use companies to
realize their iIdeas

or find money
In other places

but with a good idea and
commitment big & crazy
dreams can be realized

= working differently =

containers, bpftrace, realtime, ...

Linux learned a lot since
the early FOSDEM days

It took quite long to get
those features realized

that's just how the Linux world iIs

you can't just hire
~50 developers

and make them build a feature you
want in two or three years

like Sun could for Zones, DTrace or ZFS

bears costly risks

Linux developers might
reject the outcome

they want to see small

Incremental, steps

which take more work, time, and
might have a bad return of
Investment

served them very well

as often lead to one of the best or
the best solution on the market

but it has
disadvantages, too

political and licensing issues aside

Is ZFS (2005) the most
sophisticated filesystem
IN the *nix world?

hands up If, you agree!

work on "ZFS for Linux" already
started in ~2008

Btrfs

but hasn't reached
that goal yet

doesn't look like it will become a
Linux-ZFS anytime soon

Implemented but not recommended for production use | adit |

« Hierarchical per-subvolume quuta?"-’*l
« RAID 5, RAID 6l46]

Planned but not yet implemented | edit]
« In-band data deduplicationt32!
Online filesystem check[47]
RAID with up to six parity devices, surpassing the reliability of RAID 5 and RAID 648!
Object-level RAID 0, RAID 1, and RAID 10
Encryption!8ll42]

In 2009, Btrfs was expected to offer a feature set comparable to ZFS, developed by Sun Microsystems.[50] After
Oracle's acquisition of Sun in 2009, Mason and Oracle decided to continue with Btrfs development.[51]

Cloning | edit]

= [3 - L 3 =

https://en.wikipedia.org/wiki/Btrfs#lmplemented but _not recommended_for_production_use
see also: https://btrfs.wiki.kernel.org/index.php/Status

So what went wrong?

one thing for sure

It was overhyped

still needed a lot of Improvements
after the groundwork was done

and that as always, was...

done In small steps that
took (and take)
a lot of time

shows
how quick things
Improve mainly
depends on...

(1) how complex the
problem iIs and

(2) how many
Individuals or companies
back development

turned out:

problem scope Is
really complex...

and companies did not
care too much

some companies
helped quite a bit

Oracle, Suse, Facebook,
and a few others

but some didn't help

much or at all
(no complaint)

big question

will Linux get something
to compete with ZFS?

I'm pretty sure:

sooner or later 1t will!
it might just take 10 more years...

will It be bcachefs?

a lot of people have high expectation

I'd say:

walit and see

and keep your expectations
under control

history shows:

it's a hard problem that
takes a lot of effort

bcachefs right now Is nearly a one-
man show and not even submitted to
upstream inclusion yet...

unlikely to fly soon

will take many years, even If big
companies would start to back it

= lifestyle =

before coming to an

end, let's switch gears

stop talking about features and look
how the Linux kernel is developed

during the early FOSDEM days

L Inux kernel
development looked
odd to outsiders

no central
development forge

like sourceforge, gitlab or github

development driven
by maill

Dozens of mailing lists

no tracker for patch

submissions
quite a few fall through the cracks

No central iIssue tracker

for neither developers nor users

long unstable
development phases

new features lingered In
unstable tree for long

no predictable release
cadence

no driver database

no way to easily look up if Linux
contains a driver for your particular
hardware and see what features it
supports

we had a overworked
lead developer

one reason for that:

we did not even have a

version control system
(VCS)

there were more
odd aspects

the kernel development
model improved
somewhat since then

after a short bitkeeper journey

we got git in 2005!

changed the world for the better,
thanks Linus!

unstable/stable model left behind

we got a mostly
predictable release
cycle (2005/~2.6.13)

new releases every 9 or 10 weeks

a lot called it crazy back then, but

turned out very well!
browsers picked scheme up

we also got Stable and

Longterm kernels
~2005; 2.6.11.y, 2.6.16.y

but to be honest

many of the other odd
things are still around

some even got worse...

we now have hundreds
of mailing lists

Instead of a few Dozen

there Is a bugzilla, which
a lot of developer
do not look at at all

hint: official place to report a bug In
most cases Is a mailing list!

security became much more
Important, but we

still have no automated
code checking In a
central place

a lot of room for
Improvements here

switch to a central forge
like gitlab or github?

could be a major step forward, as
this brings ClI, issue tracker, code
review, and many more things

but no, that won't
happen anytime soon

just as with features:

developers demand
small steps here, too

needs someone motivated enough to
drive small, boring things forward

without an iImmediate
return of Investment

as that's why quite a few
things are still
Kinda archaic

which becomes more and
more of a problem...

Developer satisfaction?

communication style :(

lost patches feeling non-productive :(

struggling with tools :(lost of patch versions :(

lost of "nitpicks" :(Do | want to send a patch

that | don't have to?... duplicate work :(

lost bugs :(Do | want to finish my patch?...

introducing regressions :(what's the status of my patch? :(

late reverts :(
can't add tests :(non-transparency :(

inconsistency :(

Pl o) 7:29/4811

lwn.net/Articles/799134/ (links to slides)
www.youtube.com/watch?v=iAfrrNdI2f4

Content
Weekly Edition

Archives

Search

Kernel

Security
Distributions
Events calendar
Unread comments

LWN FAQ

Write for us

Edition

Return to the Front
page

knurd | Log out | (Subscriber)

Next steps for kernel workflow improvement

November 1, 2019

055 EU

By Jonathan Corbet

| The kernel pmject'a email- hased develnpment pmcess Is well Established and

Mair '|1ELII'|E'IE- SL 1‘1|n|1 It became clear that the kernel's prncessea are muu::h In
need of updating, and that the maintainers are beginning to understand that. It is
* one thing, though, to establish goals for an improved process; it is another to

actually implement that process and convince developers to use it. At the 2019 Open Source Summit
Europe, a group of 20 or so maintainers and developers met in the comer of a noisy exhibition hall to try to
work out what some of the first steps in that direction might be.

The meeting was organized and led by Konstantin Ryabitsev, who is in charge of kernel.org (among other
responsibilities) at the Linux Foundation (LF). Developing the kernel by emailing patches is suboptimal, he
said, especially when it comes to dovetailing with continuous-integration (Cl) processes, but it still works well
for many kernel developers. Any new processes will have to coexist with the old, or they will not be adopted.
There are, it seems, some resources at the LF that can be directed toward improving the kernel's
development processes, especially If it is clear that this work Is something that the community wants.

Attestation

https://lwn.net/Articles/803619/

Thread

.

F Dmitry Vyukov

O B©

Welcome #Gerrit changes for #linux kernel:

linux-review. Jgoodglesource.coim fc/virt/kvm/kvm...

P
=
i

and the mailing list version for contrast:
202001.231...

Gerrit has side-by-side diffs, full expandable context,
non-lossy comments attached to lines.
Here are docs:

linux.googlesource.com/Documentation/...

M
A
=
o

https://twitter.com/dvyukov/status/1220410272755671043

just like with features

small steps are taken
and it will take time, you can help!

should the Linux

Foundation help more?
not sure about that

Linux developers likely would prefer not to be governed
like OpenStack or Kubernetes are

WLV EESS

Linux development
meanwhile runs at the
usual pace

a new kernel version
every 9 or 10 weeks

for many years now

each with ~13.500
commits these days

diffstat:

bringing round about
+650.000 Iinsertions and
-350.000 deletions

growth: ~1,5 million lines per year

about 15 years after

Andrew Morton wrote:

(who back then was
#2 In the hierarchy)

From: Andrew Morton <akpm@osdl.org=

To: ebiederm@xmission.com (Eric W. Biederman)

Cc: torvalds@osdl.org, pavel@suse.cz, len.brown@intel.com,
drzeus-list@drzeus.cx, acpi-devel@lists.sourceforge.net,
ncunningham@cyclades.com, masouds@masoud.ir,
linux-kernel@vger.kernel.org

Subject: Re: [PATCH 2/2] suspend: Cleanup calling of power off methods.

Date: Wed, 21 Sep 2005 11:24:48 -0700

Message-ID: <20050921112448.0el21a3d.akpm@osdl.org> (raw)

In-Reply-To: <milligcmzr.fsf@ebiederm.dsl.xmission.com>

ebiederm@xmission.com (Eric W. Biederman) wrote:
=

- Famous last words, but the actual patch volume _has_ to drop o one da

> In fact there doesn't seem to much happening out there wrt 2.6.15.

From: Andrew Morton <akpm@osdl.org=

To: ebiederm@xmission.com (Eric W. Biederman)

Cc: torvalds@osdl.org, pavel@suse.cz, len.brown@intel.com,
drzeus-list@drzeus.cx, acpi-devel@lists.sourceforge.net,
ncunningham@cyclades.com, masouds@masoud.ir,
linux-kernel@vger.kernel.org

Subject: Re: [PATCH 2/2] suspend: Cleanup calling of power off methods.

Date: Wed, 21 Sep 2005 11:24:48 -0700

Message-ID: <20050921112448.0el121a3d.akpm@osdl.org> (raw)

In-Reply-To: <milliqcmzr.fsf@ebiederm.dsl.xmission.com>

ebiederm@xmission.com (Eric W. Biederman) wrote:

=lFamous last words, but the actual patch volume _has_ to drop o
> In fact there doesn't seem to much happening out there wrt 2.6.15.

Due to changes coming through git or that there will simply be fewer
things that need to be patched?

We're at -rc2 and I only have only maybe 100 patches tagged for 2.6.15 at
this time. The number of actual major features lined up for 2.6.15 looks
relatively small too.

As I said, famous last words. [SIVRSEYIZENEAVICRE ol s Noh E=3 T o o =00 o o B (o B T T-2s - AVARNH |

= summing things up =

Linux developers
solve big problems

IN small steps
#bigkernellock

small steps lead to
better and more flexible

solutions
ttkvm vs ttxen

sometimes make new,
groundbreaking

technologies possible
#docker

building blocks build In
small steps can even
help fulfilling old wishes

#DTrace 2.0

process can lead to
guite unexpected,

disrupting results
#bpf (keep an eye on it!)

that's what made and
makes Linux so great

reaching big goals with
small steps takes time

and thus money

they thus need someone
really committed

ideally and individual
that wants to realize a
dream

that worked great

IN a lot of areas

#Hrealtime — but also #BKL, #KVM,
#DTace 2.0, #BPF, ...

IN Some areas, we are
not there yet :-/

to Improve things,
become an individual
that Is committed

and find money to get
the dream realized

then Linux will get a
filesystem even better
than ZFS

and developer tools and
schemes even better
than what we have

or other things that will
have a positive Impact
on the world

like Linux and Git
had and have

which once
were just a dream
IN somebody's head

that's It — questions?
(TWIMC: this is slide #234)

feedback

please provide feedback

feedback welcomed, even If negative,
talk to me!

mall: linux@leemhuis.info, thi@ct.de
GPG Key: Ox72B6EGEF4C583D2D

soclial media: @kernellogger,
@knurd42 on #twitter & #friendica

4 more soclal media accounts, see
www.leemhuis.info/me/

#EOF

