
Thorsten Leemhuis

The Linux Kernel:
We have to finish this

thing one day ;)
Solving big problems in small

steps for more than two decades

twentieth
(F)OSDEM
already?
time flies…

big round of applause please:

for organizers and all
other volunteers!

you made and make this great
conference happen! many thx!

warning: this talk is part
of the history track

but no, won't be a
boring history class

I promise!

everything I mention is
kinda relevant for today

and tomorrow

 there will be a moral of
the story in the end

so let's get started…

= the stage =

the first (F)OSDEM
happened in 2001

Linux 2.4 had just
 been released

had about all important
features it needed

back then
all needed to conquer the world!

proper Posix support

X was running (0.95)

arch portability (1.2 & 2.0)

SMP (2.0)

proper performance
this and many other important things

since then it got tons of
improvements…

this talk will only give a glimpse into
what happened

= growing up =

2.4 likely would not run
too well on today's

computers
due to missing drivers,

obviously, but also…

numbers of CPU cores
would be problematic

back then, uniprocessor
systems were the norm

today, we have CPUs with
12 or 16 cores not that expensive

and even smartphones often have at least four cores

Linux was SMP capable
since 2.0 (Jun 1996)

was realized with the help
of a big hammer

Big Kernel Lock / BKL
 only one CPU core is allowed to
execute kernel code at any time

with obvious performance impact ;-)

finer graded locking
followed in 2.2

even more in 2.4

that made Linux
better at scaling

still: in the 2.4.x days, other
Unixes were known to scale better

by 2.6 (Dec 2003):

Linux got thousands of
finer-grained locks

https://lwn.net/Articles/86859/ (May 2004)

2.6.6 still had about 500
lock_kernel() calls :-/

many more steps where
needed and taken

https://lwn.net/Kernel/Index/#Big_kernel_lock

Linux finally got rid of
the BKL in 2011

after about 15 years

thx to heroic efforts by
various developers

esp. Arnd Bergmann, who took on
the task of eliminating the BKL

entirely!

the BKL might be history, but…

scalability is something
still being worked on

https://lwn.net/Kernel/Index/#Scalability

many small
improvements over time

never ending story

quite a few mm optimizations
lately

new scheduler load balancing
core in Linux 5.5

scheduling for asymmetric
systems got improved recently

most people do not
notice any of this

mostly flies under the radar

thx to all these small steps

Linux is and stays
 one of the best scaling

OS kernels

= being a good host =

getting rid of the BKL
was one of the first big

achievements
reached in many small steps

something everybody
worked towards

not always like that

more often, there is
some competition

which can lead to interesting results

something important today was
absent in the early FOSDEM days:

builtin virtualization
capabilities

 in the mid 2000s:

virtualization with
x86 Linux got famous

Xen (~2005) made it popular
 and x86 processors started getting

virtualization capabilities (2006)

Xen looked like the
obvious and fitting

solution the Linux world
one that everyone seemed

to agree on

only problem:

support for running as
Host (Dom0) or Guest

(DomU) was out-of-tree

and Xen was a Kernel
underneath the Linux

kernel

then suddenly, out of nowhere,
in Oct 2006:

KVM
merged already into 2.6.20

in Feb 2007
because it was so small

in the beginning compared to Xen

worse performance,
less features,

CPU support required
a toy?

KVM was quickly
improved in small steps
various people and companies made

it better and better

a we know today:

turned out to be
a game changer

used basically everywhere these
days and made Linux rule the cloud

Xen still around
Dom0 and DomU support only

merged in 3.0 days (2011!)
and small when compared to KVM

why did KVM succeed?

some might say:

because it took
Xensource too long to
upstream their code

definitely a factor, but I doubt it
would have changed much

the real reason: KVM had a better,
more flexible, and future-proof design

built into Linux, not
underneath it

reuse things already there

that suited Linux more
and left it in control

which obviously is in the interest of
Linux developers

that's why a lot of
people were
willing to help

which in the end resulted
in a better solution

history lesson relevant today, as
every now and then we have

similar situations like
Xen vs KVM

DPDK (Data Plane
Development Kit)

a technique to make network
packages bypass the Linux kernel

Linux developers started
to fight back

with the eXpress Data Path (XDP),
whereupon the

AF_XDP socket (XSK) builds

seems XDP & AF_XDP
can mostly keep up with

DPDK these days
likely more future proof

another similar situation

Asynchronous I/O (AIO)
common in the Windows world,

unusual in Linux

these days

io_uring finally brings
proper AIO to Linux

an answer to the SPDK
Storage Performance Development

Kit – a I/O bypass technique that
started to gain territory

https://twitter.com/mjpt777/status/1215209572681515008

just as KVM:

both XDP/AF_XDP and
io_uring started small

and got and get improved
in small steps

= hosting differently =

another thing Linux still lacked during
the early days of FOSDEM

support for Containers

other Unixes supported them already

FreeBSD jails (1999),
Solaris Zones (2004)

Linux containers only
became famous ~2014

so why did it
take so long?

kernel simply lacked
required features

impossible to build something like
Jails or Zones easily & reliable

features got built,
one step at a time

took years…

some for exactly this
use case

various namespaces (2002 - now)

some for nearly this
use case

cgroups (2007)
(initially often used for Virtualization with KVM)

some for different
use cases

capabilities (~2003),
 seccomp (2005),

…

Docker combined
features in a new, more

attractive way

…and made Linux
containers popular

these small steps thus in the end
changed the computer world

funny detail:

LXC was designed to
become the preferred

container solution

Virtuozzo/OpenVZ
became small; Linux-

Vserver nearly forgotten
they came earlier, but

used out-of-tree patches

LXC still around, but not
as big as Docker

ChromeOS and Canonical use it

imagine for a moment

what if just one
company had been

working towards LXC?

might have been
 a pretty bad return of

investment…

those things show companies

investing money into
developing complex new

features bears risks…

a problem for the kernel, but still

Linux, the OS, got a
better and more
flexible solution

thx to the small steps
as they lead to features that Docker
could combine in new, attractive way

= unexpected, but
welcomed surprise =

docker shows:

sometimes things surface
nobody aimed for

thx to kernel improvements in small
steps, that lead to individual features
you can recombine in various ways

Linux recently started a
trip into the unknown

since ~2014 and 3.15+

people improved the
Berkeley Packet Filter

(BPF, these days often
called Classic BPF/cBPF)

the in-kernel mini-VM
(like a Java VM,

not an emulated computer)

tcpdump relied on it to
only get the packets it

was interested in
for performance reasons

(copying everything over to userland first is way too much work…)

improved cBPF
got called eBPF

called BPF for short these says :@

faster and much more
powerful VM

run small programs
in kernel mode

20 years ago, this idea would likely
have been shot down immediately

network devs scratched
itches with eBPF

and improved it again and again

XDP & AF_XDP
build upon it

other kernel subsystems
started to use it, too
and more and more will soon

https://lwn.net/Articles/810414/

eBPF still gets improved a lot
with each new version

starts to change the
kernel fundamentally

Linux gains more
aspects of a microkernel

that's what Europe's
biggest computer
magazine wrote

the German c't magazine

Disclaimer: it was
me who wrote that ;-)

others compared it to
microkernels, too

https://twitter.com/srostedt/status/1177147373283418112

https://twitter.com/toke_dk/status/1205824686426378240

maybe the beginning or
middle of a small

revolution
makes Linux more error-resistant,

flexible, and powerful

and most people don't
 notice anything

happening in
a lot of small steps

= longstanding wishes =

another area where
Linux was behind

from the early FOSDEM days
until recently

a proper tracing solution
similar to DTrace

published 2005, built for Solaris

Linux finally got something better
quite recently:

BCC and bpftrace

www.brendangregg.com/blog/2018-10-08/dtrace-for-linux-2018.html

called "DTrace 2.0" by
Brendan Gregg

"one of the leading experts
 on DTrace" (Wikipedia)

BCC and bpftrace can
do more than DTrace

pretty cool, see Brendan website, his
talks, or his book

www.brendangregg.com

just like containers:

took 10 to 15 years to
build everything into the

Linux kernel

the cool thing:

happened without a
design that had exactly
BCC or bpftrace in mind

they emerged thx to evolution

various building blocks
got developed in the
past 10 to 15 years

with smaller goals

perf, ftrace, tracepoints,
kprobes, uprobes,

kretprobes, uprobes, …
features someone developed to

scratch a specific itch

those are one part
of the solution;

the other:

eBPF ;-)

eBPF and tracing/perf
tools got combined

and people developed
BCC and bpftrace

and "ta ta", finally, after many years
and many small steps

Linux got a DTrace 2.0
15 years after people called for it…

= something impossible =

Linux soon will offer an
important new feature
one almost nobody would have

expected in the early FOSDEM days

realtime capabilities
control your Laser cutter with Linux

reminder: Realtime is primary about predictability, not performance

very vague and kinda
crazy idea back then

by a few people

https://youtu.be/BTak9U6vuc0?t=512

https://youtu.be/BTak9U6vuc0?t=799

still

the developers behind
the idea didn't give up
worked towards realizing the idea

ever since in small steps

they made Linux
better for all of us
realtime systems hit many

problems and scalability issues first

RT developers had
lots of body blows

one of the worst afaics:

after going 90 to 95% of
the route, they needed

money for the rest
most of those that used RT patches
didn't help much with development

luckily, the RT people were
successful

Linux Foundation helped
and founded a project

2015

soon the main trip will
finally be finished

CONFIG_PREEMPT_RT
already in mainline

but not exposed yet!

main thing missing

a printk() rework
https://lwn.net/Articles/800946/

differences got settled recently,
just need to be implemented

looks like it will
be ready this year

realtime, for real, this year, too?

describing all the steps
taken would fill hours

https://lwn.net/Kernel/Index/#Realtime

shows:

crazy goals that look
unreachable can be

achieved in small steps

that's how most kernel
big features evolve

as new kernel features
often are not designed

by some company

often it are individuals
that want to realize
an idea or a dream

they might have to
(ab)use companies to

realize their ideas

or find money
in other places

but with a good idea and
commitment big & crazy
dreams can be realized

= working differently =

containers, bpftrace, realtime, …

Linux learned a lot since
the early FOSDEM days

it took quite long to get
those features realized
that's just how the Linux world is

you can't just hire
~50 developers

and make them build a feature you
want in two or three years

like Sun could for Zones, DTrace or ZFS

bears costly risks

Linux developers might
reject the outcome

they want to see small
incremental, steps

which take more work, time, and
might have a bad return of

investment

served them very well
as often lead to one of the best or

the best solution on the market

but it has
disadvantages, too

political and licensing issues aside

Is ZFS (2005) the most
sophisticated filesystem

in the *nix world?

hands up if, you agree!

work on "ZFS for Linux" already
started in ~2008

Btrfs

but hasn't reached
that goal yet

doesn't look like it will become a
Linux-ZFS anytime soon

https://en.wikipedia.org/wiki/Btrfs#Implemented_but_not_recommended_for_production_use
see also: https://btrfs.wiki.kernel.org/index.php/Status

so what went wrong?

one thing for sure

it was overhyped
still needed a lot of improvements

after the groundwork was done

and that as always, was…

 done in small steps that
took (and take)

 a lot of time

shows

how quick things
improve mainly
depends on…

(1) how complex the
problem is and

(2) how many
individuals or companies

back development

turned out:

problem scope is
 really complex…

and companies did not
care too much

some companies
helped quite a bit
Oracle, Suse, Facebook,

and a few others

but some didn't help
much or at all

(no complaint)

big question

will Linux get something
to compete with ZFS?

I'm pretty sure:

 sooner or later it will!
it might just take 10 more years…

will it be bcachefs?
a lot of people have high expectation

I'd say:

wait and see
and keep your expectations

under control

history shows:

it's a hard problem that
takes a lot of effort

bcachefs right now is nearly a one-
man show and not even submitted to

upstream inclusion yet…

unlikely to fly soon
will take many years, even if big
companies would start to back it

= lifestyle =

before coming to an
end, let's switch gears

stop talking about features and look
how the Linux kernel is developed

during the early FOSDEM days

Linux kernel
development looked

odd to outsiders

no central
development forge

like sourceforge, gitlab or github

development driven
 by mail

Dozens of mailing lists

no tracker for patch
submissions

quite a few fall through the cracks

no central issue tracker
for neither developers nor users

long unstable
development phases

new features lingered in
unstable tree for long

no predictable release
cadence

no driver database
no way to easily look up if Linux

contains a driver for your particular
hardware and see what features it

supports

we had a overworked
lead developer
one reason for that:

we did not even have a
version control system

(VCS)

there were more
odd aspects

the kernel development
model improved

somewhat since then

after a short bitkeeper journey

we got git in 2005!
changed the world for the better;

thanks Linus!

unstable/stable model left behind

we got a mostly
predictable release

cycle (2005/~2.6.13)
new releases every 9 or 10 weeks

a lot called it crazy back then, but

turned out very well!
browsers picked scheme up

we also got Stable and
Longterm kernels
~2005: 2.6.11.y, 2.6.16.y

but to be honest

 many of the other odd
things are still around

some even got worse…

we now have hundreds
of mailing lists

instead of a few Dozen

there is a bugzilla, which
a lot of developer

do not look at at all
hint: official place to report a bug in

most cases is a mailing list!

security became much more
important, but we

still have no automated
code checking in a

central place

a lot of room for
improvements here

switch to a central forge
like gitlab or github?

 could be a major step forward, as
this brings CI, issue tracker, code

review, and many more things

but no, that won't
happen anytime soon

just as with features:

developers demand
small steps here, too

needs someone motivated enough to
drive small, boring things forward

without an immediate
return of investment

as that's why quite a few
 things are still
kinda archaic

which becomes more and
more of a problem…

lwn.net/Articles/799134/ (links to slides)
www.youtube.com/watch?v=iAfrrNdl2f4

lwn.net/Articles/799134/ (links to slides)

https://lwn.net/Articles/803619/

https://twitter.com/dvyukov/status/1220410272755671043

just like with features

small steps are taken
and it will take time; you can help!

should the Linux
Foundation help more?

not sure about that
Linux developers likely would prefer not to be governed

like OpenStack or Kubernetes are

nevertheless

Linux development
meanwhile runs at the

usual pace

a new kernel version
every 9 or 10 weeks

for many years now

each with ~13.500
commits these days

diffstat:

bringing round about
+650.000 insertions and

-350.000 deletions
growth: ~1,5 million lines per year

about 15 years after
Andrew Morton wrote:

(who back then was
#2 in the hierarchy)

= summing things up =

Linux developers
solve big problems

in small steps
#bigkernellock

small steps lead to
better and more flexible

solutions
#kvm vs #xen

sometimes make new,
groundbreaking

technologies possible
#docker

building blocks build in
small steps can even

help fulfilling old wishes
#DTrace_2.0

process can lead to
quite unexpected,
disrupting results
#bpf (keep an eye on it!)

that's what made and
makes Linux so great

reaching big goals with
small steps takes time

and thus money

they thus need someone
really committed

ideally and individual
that wants to realize a

dream

that worked great
in a lot of areas

#realtime – but also #BKL, #KVM,
#DTace_2.0, #BPF, …

in some areas, we are
not there yet :-/

to improve things,
become an individual

that is committed

and find money to get
the dream realized

then Linux will get a
filesystem even better

than ZFS

and developer tools and
schemes even better
than what we have

or other things that will
have a positive impact

 on the world

like Linux and Git
had and have

which once
were just a dream

in somebody's head

that's it – questions?
(TWIMC: this is slide #234)

feedback

please provide feedback
feedback welcomed, even if negative;

talk to me!

mail: linux@leemhuis.info, thl@ct.de
GPG Key: 0x72B6E6EF4C583D2D

social media: @kernellogger,
@knurd42 on #twitter & #friendica

4 more social media accounts, see
www.leemhuis.info/me/

#EOF

