
Sphactor
actor model concurrency for creatives

expertise centre creative technology

Background

• >3900 students• one of the largest culture-oriented
institutes in Europe• Expertise Centre Creative Technology

Context: Motion Capture & OSC

Programming Didactics

User Operator Scripter Developer

Consuming
technology

Combining
technologies

Lego-ing with
technologies

Final boss

Multi Core?

Multi Core?

Actor Model

•message passing• defined 1973 Hewitt• 80's -> erlang -> whatsapp• actor == sequential program sending and receiving• actors are simple

Actor Model - sphactor

Actor Model - sphactor

def do(msg):
img = decode(msg)
blob = detectFace(img)
blob.traceContour()
blob.validate()
return blob

Actor Model - sphactor

Main Thread (control & ui)

inproc channel

Actor states

INIT STOP DESTROY

SOCK

TIME

IDLE

gazebosc

osc
osc

osc osc

osc

osc

osc

Gazebosc demo

Gazebosc Python Actor

import sph
pip install python-osc
from pythonosc import osc_message_builder

class tester(object):

def handleMsg(self, msg, type, name, uuid, *args, **kwargs):
just pop the first string and return the rest
t = msg.popstr()
print("Message received: {}".format(t))
msg = osc_message_builder.OscMessageBuilder(address="/Hello")
msg.add_arg("hello from python")
osc = msg.build()
return osc.dgram

Gazebosc C++ Actor

#include "libsphactor.h"

class Test {
public:

zmsg_t *
handleMsg(sphactor_event *ev) {

char *cmd = zmsg_popstr(event->msg);
zsys_info("Cpp actor %s says: %s", event->name, cmd);
// if there are strings left publish them
if (zmsg_size(event->msg) > 0) {

return event->msg;
}
else {

zmsg_destroy(&event->msg);
}
return nullptr;

}
};

Up & Running

#include "libsphactor.h"

int main() {

Test a = Test();
sphactor_t *actora = sphactor_new(a, "hello-a", nullptr);
// actora is running, request its name
const char *name = sphactor_ask_name(actora);
assert(streq(name, "hello-a"));
...
// connect it another actor
sphactor_ask_connect(actora, sphactor_ask_endpoint(actorb));
...
// cleanup
sphactor_destroy(&actora);
return 0;

}

API
sphactor API(main thread)
sphactor_new
(handler, args, name, uuid);
sphactor_destroy(self);

sphactor_ask_endpoint(self);
sphactor_ask_connect

(self, endpoint);
sphactor_ask_disconnect

(self, endpoint);
sphactor_ask_set_timeout

(self, timeout);

sphactor_actor API(actor thread)
sphactor_actor_poller_add

(self, fd, handler);

Under the hood

ZeroMQ / czmq

Dear IMGUISDLLiblo
Embeds Python

Wrapping up

• Actor Model Framework aimed at simplicity
• Early stage so all the cliche todo's
• Try it, help us out. Especially if:• want a tool so you can play with technology• familiar with file descriptors/reactor pattern

Sphactor

https://github.com/hku-ect/libsphactor
https://github.com/hku-ect/gazebosc

Background paper: see FOSDEM event link

actor model concurrency for creatives

expertise centre creative technology

