Sphactor: Actor Model Concurrency for
Creatives

initial design of a new framework

Arnaud Loonstra <arnaud@sphaero.org>,
Aaron Oostdijk <aaron.oostdijk@hku.nl>,
Mikal van Leeuwen <mikal@dehoofdwerker.nl>
January 20 2020 (draft version)
Expertise Centre Creative Technology, Utrecht University of the Arts

Abstract

We propose a combined visual and text-
based programming environment based on the
actor model suitable for novice to expert
programmers. This model encompasses simple
communicating entities which easily scale from
utilizing threads inside the computer to massive
distributed computer systems. To design our
proposed environment we classify different
levels of programming users encounter when
dealing with technologies in creative scenarios.
We use this classification system as a_foundation
to design our proposed environment to support
(novice) users on their way to a next level. This
framework not only intends to support modern
computing power through a concurrent
programming paradigm, but is also intended to
let users interact with it on the different
classification levels.

Introduction

This research is related to enabling novice
users to utilize computer technology. In general
we can say that every novice user finds it hard to
utilize modern technologies. Especially very
contemporary popular technologies such as
Mixed Reality require a user to know
programming to fully operate the technology.
While novice users are very interested in these
technologies, they usually do not posses the

necessary skills and can find these technologies to
be intimidating.

As an example; within the university students
want to work with motion capture technologies.
However as soon as they want to do custom
things with the sensors they need to work with the
manufacturer’s C++ SDK. This is often beyond
their current skill level and it would take a
significant amount of time and effort to get them
there by themselves. Moreover, it is beyond the
current curriculum for these students to get them
to the required level of programming proficiency.

To overcome this hurdle we have created a
simple software tool which translates the motion
capture data to Open Sound Control (OSC)!. The
reason we translate to OSC was due to the fact
that all tools operated by our students can receive
OSC out of the box.

By doing this we noticed the barrier for
operating the motion capture technology was
lowered sufficiently for students to become very
creative with the possibilities of capturing
motion. As this is was the intended goal of the
exercise for our students we began plotting how
we could expand this to more technologies.

Extrapolating what would be needed to do this
more showed an immediate jungle of tools
emerging with a maintenance challenge to keep it
running on students machines. Therefore we
wanted to develop an environment in which we
could connect any number of systems. We
envisioned this as an intermediate software layer
in which we could plug any technology. Ideally
this could plug into other tools instead of being its
own tool.



Besides lowering the barriers for newcomers
we want to embed a didactic view on utilizing
technologies. As we want our students to move
from solely ‘using’ to also ‘operating’ and
programming technologies, we would like to give
them a sustainable learning path. We often see
tools that are comfortable for students to use but
limit them in the long run when the student wants
more than the tool can provide.

Finally we notice that current student’s
computers are equipped with multiple processors
but the tools they operate sporadically utilize all
these processors. We therefore researched how
utilizing multiple processors could be integrated
from the start.

In this research, we develop a first prototype
with the specific intent to address the above
mentioned situations while also providing us with
intermediate technology we can improve on.

Related Work

Creative coding is a phrase coined by John
Maeda in 2004 2. We refer to this term when we
see artists generating expressions using computer
technology through programming.

We talk of a Creative Coding ‘tool’ when it is
a software environment in which one can
program to generate output. We talk of a Creative
Coding ‘framework’ when one can program to
create an application which generates output.

There are many tools and frameworks
available for Creative Coding. Here we will only
mention those relevant for our research or when
having a strong presence in Creative Coding
practices.

Max® and Puredata® are most popular
Dataflow programming tools which have a strong
presence in audio practices. One can program
using flows of data from one block to another.
While neither tools are able to utilize multiple
processors, the Dataflow programming model has
similarities to the Actor Model’, which we will
mention further on, because of its sending and
receiving of data.

Isadora® is a tool which is very welcoming for
novice users. It’s an environment in which one
can create interactive scenes using actors. It
appears that Isadora operates on an Actor Model

but it it seems to do so non-concurrently. We
cannot confirm this because of its proprietary
nature.

Touchdesigner’ is another Creative Coding
tool mostly geared towards visual output. We are
only recently seeing Touchdesigner being used
by artists. It seems to operate on a Dataflow
model which can utilize the GPU or offload to
other CPU’s for some operations. It is regarded as
more complex than Isadora for example and
therefore more intimidating for novice users.

Processing® and OpenFrameworks® are the
most popular Creative Coding frameworks in
which one can program in Java or C++
respectively. Both frameworks operate on the
same principle of a game application loop'
consisting of setup(), update() and draw()
methods. While Processing is the go-to
framework for newcomers, OpenFrameworks
seems to better cater for serious programming
practices.

OpenFrameworks is very popular creative
coding frameworks but because it uses C++ it is
regarded as much more intimidating than
Processing. Setting up the OpenFrameworks
environment requires considerable more effort
than simply installing Processing. Understanding
OpenFrameworks error messages implies
knowledge about compilers and linkers which no
novice user will have. Moreover, we have noticed
time and time again that text based programming
is only picked up by newcomers if they explicitly
need to do so.

It is therefore interesting to mention the
developments around the Mosaic!! environment.
Mosaic is a Visual Patching tool built on top of
the OpenFrameworks eco—system. It is still in
development but seems to merge
OpenFrameworks with visual programming and
higher level programming languages such as Lua
and Python.

Another interesting project in this regard is the
OSSIA!?  project which is an interactive
sequencer and corresponding libraries. It utilizes
the OSC protocol as well as a discovery protocol.
OSSIA is specially aimed at using OSC to control
other tools and uses as specially designed Ul to
create interactive sequences.

We notice students own computers equipped
with multiple processors. However the tools they



operate, like the tools we mentioned, sporadically
utilize all processors inside the computer.

Since around 2003 CPU manufacturers are
unable to manufacture faster CPU’s anymore.
Instead they are manufacturing CPU’s consisting
of multiple processors to keep up with
performance demand. However programming for
multiple CPU’s requires a concurrent
programming approach which is quite different to
normal sequential programming.

There is a lot of research being done about
concurrent programming practices. We relate to
two concurrency models which we deem relevant
for our needs. The first paradigm is Message
Passing'* which synchronizes by the simple fact
that a message can only be received after it has
been sent.

The Actor Model® is another fundamental
concurrency model which treat “Actors” as the
universal primitives of digital computation. It
utilizes Message Passing as Actors can send and
receive messages.

Previous research!® within our university and
together with partners was into distributed
computing for creative practices. This research
also related to both the Actor Model and Message
Passing. From this research a prototype protocol
and corresponding orchestrator tool called
ZOCP'¢ was developed. Our current research is
much alike and might ideally merge in a later
stadium.

A didactic model

Computational Thinking is considered a 21st
century skill'” and positioned as one of the major
skills students need to be taught. One of the best
approaches to learning computational thinking is
by learning to program'®. When one wants to
operate on technology one eventually runs into
programming. However picking up programming
is not something one just picks up like that. It is
often regarded as very challenging with steep
learning curves.

Looking at the process of learning to get
acquainted with technologies we have divided
four distinct phases a practitioner runs into.
(Note; this is a non academically verified
classification based on our experience with

dealing with students and technologies in
creative practices)

User The first phase, in which people
use technology. The User only
consumes technology and is not
able to build significantly new
applications with it.

When one wants to create
something with technologies one
becomes an Operator. In this
level one wants to control and
mix technologies and can do so in
a limited fashion using pre-built
tools and applications.

Operator

Scripter When one is too much limited
within the bounds offered by the
currently available technology
one seeks further control of
technologies and can be
considered Scripter. In this level
one will program and mix
technologies.

Developer | When one controls technologies
fully one can be considered a
Developer. One is only limited by
technology itself and their

creative mind.

These User Levels support us in creating a
didactic model to expose to new users. We want
to expose a new user to technologies in a way that
supports them in all levels they will reach. We
often find that visual programming is very
welcoming for new users. We also noticed that
these environments are often a dead end when
one wants to go further. Either one needs to move
to more general programming practices and leave
the current practice behind or one ends up
building extensions for the tool they already
know using its API or SDK.

Ideally we would provide students with a tool
that enables them to delve deeper into next user
levels without the need to move to other
frameworks or tools. A tool like that would
consist of visual programming methods as well as
classical text based programming. This tool
would then also be able to utilize multiple
processors which could be accomplished by
embracing the Actor Model.

Existing  text-based  creative  coding
environments such as  Processing and
OpenFrameworks use a similar application loop.
One implements 'setup' for initialization and
'update’ and 'draw' methods for the loop. This is
the basis for both frameworks. The Arduino
environment does a similar approach with a setup
and loop method.



This model is perfectly applicable to our Actor
Model as well, with the remark that we only need
to add receiving messages. We can mentally
consider every actor to be a virtual Arduino
which is able send and receive messages.

Since the Arduino is very close to plain C
development and OpenFrameworks to C++, we
can design a library with these approaches that
could be deconstructed into libraries used within
existing practices.

Implementation

For this initial phase of development we
wanted to create a low level software layer which
we could build on top of. We wanted to assure the
technologies we chose now would be relevant
once we improved on the first development
phase. For our prototype we chose to develop in C
because we wanted to be able to use it in other
frameworks and programming languages later on.
We find C easiest and most mature to bind to
other programming languages.

We have determined the following
requirements: We needed concurrency primitives
as actors need to able to run on any processor
available simultaneously. We chose to use a
thread per actor. Actors need to communicate
with each other therefore we need thread safe
datastructures for communication. We found
Zeromq’s czmq'® framework to provide the
primitives we needed we needed and more. It also
enabled us to build upon its provided actor
methods.

Every actor runs a reactor pattern’® which
utilizes a kernel level polling mechanism. This
way an actor can block on multiple
communication channels. Each actor has a
dedicated in memory point to point
communication channel for control and uses a
publication (pub) socket to publish data to other
actors. An actor can subscribe to another actor’s
“pub” socket through a subscribe (sub) socket.
Using this topology actors can communicate with
each other and can be managed. The following
diagram illustrates the actor setup.

main thread

With this setup actors trigger on events on its
sockets. We have added a simple timeout
mechanism which enable actors to also operate on
timed triggers. Through this an actor can for
example also use a typical game loop
programming model used in OpenFrameworks
and Processing. We expect this to be welcomed
by users coming from those frameworks.

The GUI application, which we have dubbed

Gazebosc?!

, 1s a very minimal SDL application
using an Immediate Mode UI to represent the
graph of actors. It provides control of the actors,
its connections and is able to spawn and destroy
actors. It can save the graph of actors to file and
load them from a file.

We want a visual representation of all actors
using typical nodal logic. However since we run
completely concurrently it is not safe for actors to
draw a graphical representation by themselves.
We use the dedicated control communication
channel to report its status which we use to draw a
GUI The exact implementation of this Report
API is ongoing. For now it reports a string
representation of the actor’s state.

Because the Report API used for the graphical
representation is an asynchronous
communication channel it cannot represent the
exact current state of the actor. When a report is
received, the actor might already be in a next
state. For example it can be the case that this
specific actor processes much faster than we can
represent graphically. This is an inherent feature
of concurrent programming and needs to be
accounted for by the user.

To enable easy creation of Actors we
embedded Python into the prototype. Python has
the unfortunate limitation of having a Global
Interpreter Lock which limits concurrent
computation to sequential limitation. As
performance is not our primary focus, this is no
problem for our current prototype. We are closely



following Python’s sub-interpreter’? support
which would overcome these limitations.

The development of the prototype is in its
early stages. Many things can be said about about
its design. For example one could question
whether it is optimal to use a thread per actor and
let the Operating System schedule it. Microsoft
Windows operates on a different IO model and
uses a ‘Proactor’ pattern therefore we expect
performance on Windows to be sub-optimal.
However our questions are currently focused on
whether we can let novice users operate on this
model. We will later focus on optimizing its
performance and platform support.

Initial feedback test

We organized a Freaklab?® in which we have
exposed some users to the initial prototype. We
were interested in their feedback about the
concurrency challenges, whether they could build
and run the prototype on their computer and
whether they would be able to implement a
simple HelloWorld actor or Python actor.

We invited people from our network which we
can classify as being ‘developers’ in our user-
level classification. We explicitly needed
developer level users because of the early stage of
the prototype. We expect challenges in building
the prototype and tracing bugs using debuggers
on different platforms.

Results

The Freaklab session was held with 8 people
attending using OSX and Linux systems. As we
expected mostly technical feedback we list some
of the issues we encountered

The initial hurdle to overcome were building
issues on some versions of OSX. These hurdles
are important for us to eradicate as these often are
discouraging for new users. Our session was used
to find causes of these issues. We also noticed
GIL errors when using Python before version 3.7.
We anticipate more GIL challenges once we
create more actors due to the concurrent nature of
the prototype. Linux worked out of the box.

We did not test Windows as there were no
people using Windows. We have also not
succeeded in building the prototype on Windows
due to the different build environments used by
dependencies. This needs to be sought out first.

After users were able to run the unit tests and
build the GUI application we moved on to
building custom actors. The easiest approach to
building custom actors is using the embedded
Python interpreter. This was picked up by the
users and gave no trouble. The hardest part was in
returning an OSC message from Python.
Currently we provide no methods for
constructing or deconstructing OSC messages.
This clearly needs addressing to make this more
easy.

Another approach to creating custom Actors is
by using C++. The GUI app included a GActor
class which can be inherited. This took quite
some time for users to accomplish and we noticed
from this exercise that the C++ API needs to be
simplified. Users now need to explicitly use the
same name for declaration and instantiating. This
make sense from a compiler and runtime
perspective but would be easier if this is handled
more automatic. In essence the C++ API should
work similar to the Python API which just
dictates a name for the handler method inside a
class.

Another issue we noticed was the in naming of
our API. We interchangeably use “node”, “actor”,
“backend” and “fronted” which is confusing. The
Sphactor API uses specific methods to control the
running thread(actor or node) from the main
thread. This is very important to do right, for
example C allows us to run these methods from
inside the running threads as well which could
cause errors as this is not thread safe. The API
should support the user not to do so. It would be
helpful if the naming of the API methods help the
user to know from what context it is calling a
method. One suggestion was to use a mental
model of “asking” an actor. This would be helpful
in understanding that we are asking from a second
person perspective an actor to do something.

In a later attempt we have tested a scenario
using a Python Actor to play audio trigger by a
“Manual Pulse” actor, so that a manual trigger on
different buttons would trigger audible sounds.
We refer to setups like this as a “stage”. The stage



can be saved to a file. We loaded this saved stage
file onto an other computer running a different
platform. This worked flawlessly and illustrated
how we want to enable cross-platform support. In
this scenario we benefit from Python’s cross
platform  support. = This  scenario  also
demonstrated the latency of actor communication
as no audible delay was noticeable. We still need
to acquire real performance metrics of the actor’s
communication. This will be done in a later
iteration of development when we focus more on
the performance of our framework.

Conclusion

The design of our prototype has shown some
of its potential during the tests we performed. We
have succeeded in getting the prototype to run on
other user’s machines and in getting users to
extend the possibilities of the prototype by
creating custom actors. We acquired feedback
from users during our Freaklab session which we
use in our next development iteration. Although
we do not have any performance metrics yet we
are confident to continue development in the
direction we’re heading. As our current focus is
not on performance but rather usability our next
iteration will be in simplified API’s, custom
Actor creation and more general usage example
Actors.

If in a later stadium we need to enhance
performance we have a very good option to
minimize file descriptor and thread usage by
merging actors to utilize a thread pool. The
control communication channel will then be
reduced to one channel per CPU core. This can
reduce context switching overhead and file
descriptors usage. Further optimization can then
also be accomplished by enabling actors which
operate on the same thread to just call each
other’s method instead of through their pub-sub
sockets. From a mental model this should make
no difference as actors still send and receive
messages. How it’s handled in the backend
should be of no concern to the user. For now we
leave this open as an exercise for a later moment.

References

10.

11.

12.

13.

14.

15.

Wright, Matthew. Open Sound Control 1.0
Specification. 2002,
http://opensoundcontrol.org/spec-1_0.
Maeda, John. Creative Code. Thames &
Hudson, 2004.

What Is Max? | Cycling '74.
https://cycling74.com/products/max/.
Accessed 29 Jan. 2020.

Pure Data — Pd Community Site.
https://puredata.info/. Accessed 29 Jan.
2020.

Agha, Gul A. Actors: A Model of
Concurrent Computation in Distributed
Systems. MIT Press, 1986.
TROIKATRONIX : ISADORA.
https://troikatronix.com/. Accessed 29 Jan.
2020.

Touchdesigner. Derivative,
https://derivative.ca/. Accessed 29 Jan.
2020.

Processing. https://processing.org/.
Accessed 29 Jan. 2020.

OpenFrameworks.
https://openframeworks.cc/. Accessed 29
Jan. 2020.

Witters, Koen. DeWiTTERS Game Loop —
DeWiTTERS.
https://dewitters.com/dewitters-gameloop/.
Accessed 29 Jan. 2020.

Mazza, Emanuele. Mosaic. 2018. 2020.
GitHub, https://github.com/d3cod3/Mosaic.
Ossia — Open Software System for
Interactive Applications. https://ossia.io/.
Accessed 29 Jan. 2020.

Sutter, Herb. “A Fundamental Turn Toward
Concurrency in Software.”Dr. Dobb’s,
http://www.drdobbs.com/web-
development/a-fundamental-turn-toward-
concurrency-in/184405990. Accessed 29
Jan. 2020.

Andrews, Gregory R., and Fred B.
Schneider. “Concepts and Notations for
Concurrent Programming.” ACM
Computing Surveys, vol. 15, no. 1, Jan.
1983, pp. 3-43. DOl.org (Crossref),
doi:10.1145/356901.356903.

Loonstra, Arnaud. Concurrency for Creative
Coding. Media Technology MSc
Programme - Leiden University, 8 Oct.



16.

17.

18.

19.

20.

21.

22.

23.

2015,
https://mediatechnology.leiden.edu/research
/theses/concurrency-for-creative-coding.
Loonstra, Arnaud. Orchestrating Computer
Systems, a Research into a New Protocol.
http://z25.org/static/_rd /zocp_init_plab/ind
ex.html. Accessed 29 Jan. 2020.

Jenkins, Henry. Confronting the Challenges
of Participatory Culture: Media Education
for the 21 St Century. 2006.

van der Maas, Han. Computational Thinking
— ‘Op Een Creatieve Manier Problemen
Oplossen. 30 Nov. 2016,

https://www kennisnet.nl/artikel/computatio
nal-thinking-op-een-creatieve-manier-
problemen-oplossen/.

CZMQ High-Level C Binding for OMQ .
2011. The ZeroMQ project, 2020. GitHub,
https://github.com/zeromq/czmgq.

Schmidt, Douglas C. Patterns for
Concurrent and Networked Objects. Wiley,
2000. Open WorldCat,
http://www.vlebooks.com/vleweb/product/o
penreader?id=none&isbn=9781118725177.
Gazebosc. 2019. HKU Expertise Centre
Creative Technology, 2020. GitHub,
https://github.com/hku-ect/gazebosc.

“PEP 554 -- Multiple Interpreters in the
Stdlib.” Python.Org,
https://www.python.org/dev/peps/pep-
0554/. Accessed 29 Jan. 2020.

Loonstra, Arnaud. Freaklabs: Joint Artists
and Developers Technology Design and
Evaluation.
http://z25.org/static/_rd_/freaklab_plab/inde
x.html. Accessed 29 Jan. 2020.



