
Sphactor: Actor Model Concurrency forCreatives
initial design of a new framework
Arnaud Loonstra <arnaud@sphaero.org>,Aaron Oostdijk <aaron.oostdijk@hku.nl>,Mikal van Leeuwen <mikal@dehoofdwerker.nl>January 20 2020 (draft version)Expertise Centre Creative Technology, Utrecht University of the Arts

Abstract
We propose a combined visual and text-based programming environment based on theactor model suitable for novice to expertprogrammers. This model encompasses simplecommunicating entities which easily scale fromutilizing threads inside the computer to massivedistributed computer systems. To design ourproposed environment we classify differentlevels of programming users encounter whendealing with technologies in creative scenarios.We use this classification system as a foundationto design our proposed environment to support(novice) users on their way to a next level. Thisframework not only intends to support moderncomputing power through a concurrentprogramming paradigm, but is also intended tolet users interact with it on the differentclassification levels.

Introduction
This research is related to enabling noviceusers to utilize computer technology. In generalwe can say that every novice user finds it hard toutilize modern technologies. Especially verycontemporary popular technologies such asMixed Reality require a user to knowprogramming to fully operate the technology.While novice users are very interested in thesetechnologies, they usually do not posses the

necessary skills and can find these technologies tobe intimidating.As an example; within the university studentswant to work with motion capture technologies.However as soon as they want to do customthings with the sensors they need to work with themanufacturer’s C++ SDK. This is often beyondtheir current skill level and it would take asignificant amount of time and effort to get themthere by themselves. Moreover, it is beyond thecurrent curriculum for these students to get themto the required level of programming proficiency.To overcome this hurdle we have created asimple software tool which translates the motioncapture data to Open Sound Control (OSC)1. Thereason we translate to OSC was due to the factthat all tools operated by our students can receiveOSC out of the box.By doing this we noticed the barrier foroperating the motion capture technology waslowered sufficiently for students to become verycreative with the possibilities of capturingmotion. As this is was the intended goal of theexercise for our students we began plotting howwe could expand this to more technologies.Extrapolating what would be needed to do thismore showed an immediate jungle of toolsemerging with a maintenance challenge to keep itrunning on students machines. Therefore wewanted to develop an environment in which wecould connect any number of systems. Weenvisioned this as an intermediate software layerin which we could plug any technology. Ideallythis could plug into other tools instead of being itsown tool.



Besides lowering the barriers for newcomerswe want to embed a didactic view on utilizingtechnologies. As we want our students to movefrom solely ‘using’ to also ‘operating’ andprogramming technologies, we would like to givethem a sustainable learning path. We often seetools that are comfortable for students to use butlimit them in the long run when the student wantsmore than the tool can provide.Finally we notice that current student’scomputers are equipped with multiple processorsbut the tools they operate sporadically utilize allthese processors. We therefore researched howutilizing multiple processors could be integratedfrom the start.In this research, we develop a first prototypewith the specific intent to address the abovementioned situations while also providing us withintermediate technology we can improve on.

Related Work
Creative coding is a phrase coined by JohnMaeda in 2004 2. We refer to this term when wesee artists generating expressions using computertechnology through programming.We talk of a Creative Coding ‘tool’ when it isa software environment in which one canprogram to generate output. We talk of a CreativeCoding ‘framework’ when one can program tocreate an application which generates output.There are many tools and frameworksavailable for Creative Coding. Here we will onlymention those relevant for our research or whenhaving a strong presence in Creative Codingpractices.Max3 and Puredata4 are most popularDataflow programming tools which have a strongpresence in audio practices. One can programusing flows of data from one block to another.While neither tools are able to utilize multipleprocessors, the Dataflow programming model hassimilarities to the Actor Model5, which we willmention further on, because of its sending andreceiving of data.Isadora6 is a tool which is very welcoming fornovice users. It’s an environment in which onecan create interactive scenes using actors. Itappears that Isadora operates on an Actor Model

but it it seems to do so non-concurrently. Wecannot confirm this because of its proprietarynature.Touchdesigner7 is another Creative Codingtool mostly geared towards visual output. We areonly recently seeing Touchdesigner being usedby artists. It seems to operate on a Dataflowmodel which can utilize the GPU or offload toother CPU’s for some operations. It is regarded asmore complex than Isadora for example andtherefore more intimidating for novice users.Processing8 and OpenFrameworks9 are themost popular Creative Coding frameworks inwhich one can program in Java or C++respectively. Both frameworks operate on thesame principle of a game application loop10consisting of setup(), update() and draw()methods. While Processing is the go-toframework for newcomers, OpenFrameworksseems to better cater for serious programmingpractices.OpenFrameworks is very popular creativecoding frameworks but because it uses C++ it isregarded as much more intimidating thanProcessing. Setting up the OpenFrameworksenvironment requires considerable more effortthan simply installing Processing. UnderstandingOpenFrameworks error messages impliesknowledge about compilers and linkers which nonovice user will have. Moreover, we have noticedtime and time again that text based programmingis only picked up by newcomers if they explicitlyneed to do so.It is therefore interesting to mention thedevelopments around the Mosaic11 environment.Mosaic is a Visual Patching tool built on top ofthe OpenFrameworks eco system. It is still indevelopment but seems to mergeOpenFrameworks with visual programming andhigher level programming languages such as Luaand Python.Another interesting project in this regard is theOSSIA12 project which is an interactivesequencer and corresponding libraries. It utilizesthe OSC protocol as well as a discovery protocol.OSSIA is specially aimed at using OSC to controlother tools and uses as specially designed UI tocreate interactive sequences.We notice students own computers equippedwith multiple processors. However the tools they



operate, like the tools we mentioned, sporadicallyutilize all processors inside the computer.Since around 2003 CPU manufacturers areunable to manufacture faster CPU’s anymore13.Instead they are manufacturing CPU’s consistingof multiple processors to keep up withperformance demand. However programming formultiple CPU’s requires a concurrentprogramming approach which is quite different tonormal sequential programming.There is a lot of research being done aboutconcurrent programming practices. We relate totwo concurrency models which we deem relevantfor our needs. The first paradigm is MessagePassing14 which synchronizes by the simple factthat a message can only be received after it hasbeen sent.The Actor Model5 is another fundamentalconcurrency model which treat “Actors” as theuniversal primitives of digital computation. Itutilizes Message Passing as Actors can send andreceive messages.Previous research15 within our university andtogether with partners was into distributedcomputing for creative practices. This researchalso related to both the Actor Model and MessagePassing. From this research a prototype protocoland corresponding orchestrator tool calledZOCP16 was developed. Our current research ismuch alike and might ideally merge in a laterstadium.

A didactic model
Computational Thinking is considered a 21stcentury skill17 and positioned as one of the majorskills students need to be taught. One of the bestapproaches to learning computational thinking isby learning to program18. When one wants tooperate on technology one eventually runs intoprogramming. However picking up programmingis not something one just picks up like that. It isoften regarded as very challenging with steeplearning curves.Looking at the process of learning to getacquainted with technologies we have dividedfour distinct phases a practitioner runs into.(Note; this is a non academically verifiedclassification based on our experience with

dealing with students and technologies increative practices)
User The first phase, in which peopleuse technology. The User onlyconsumes technology and is notable to build significantly newapplications with it.Operator When one wants to createsomething with technologies onebecomes an Operator. In thislevel one wants to control andmix technologies and can do so ina limited fashion using pre-builttools and applications.Scripter When one is too much limitedwithin the bounds offered by thecurrently available technologyone seeks further control oftechnologies and can beconsidered Scripter. In this levelone will program and mixtechnologies.Developer When one controls technologiesfully one can be considered aDeveloper. One is only limited bytechnology itself and theircreative mind.These User Levels support us in creating adidactic model to expose to new users. We wantto expose a new user to technologies in a way thatsupports them in all levels they will reach. Weoften find that visual programming is verywelcoming for new users. We also noticed thatthese environments are often a dead end whenone wants to go further. Either one needs to moveto more general programming practices and leavethe current practice behind or one ends upbuilding extensions for the tool they alreadyknow using its API or SDK.Ideally we would provide students with a toolthat enables them to delve deeper into next userlevels without the need to move to otherframeworks or tools. A tool like that wouldconsist of visual programming methods as well asclassical text based programming. This toolwould then also be able to utilize multipleprocessors which could be accomplished byembracing the ActorModel.Existing text-based creative codingenvironments such as Processing andOpenFrameworks use a similar application loop.One implements 'setup' for initialization and'update' and 'draw' methods for the loop. This isthe basis for both frameworks. The Arduinoenvironment does a similar approach with a setupand loopmethod.



This model is perfectly applicable to our ActorModel as well, with the remark that we only needto add receiving messages. We can mentallyconsider every actor to be a virtual Arduinowhich is able send and receive messages.Since the Arduino is very close to plain Cdevelopment and OpenFrameworks to C++, wecan design a library with these approaches thatcould be deconstructed into libraries used withinexisting practices.

Implementation
For this initial phase of development wewanted to create a low level software layer whichwe could build on top of. We wanted to assure thetechnologies we chose now would be relevantonce we improved on the first developmentphase. For our prototype we chose to develop in Cbecause we wanted to be able to use it in otherframeworks and programming languages later on.We find C easiest and most mature to bind toother programming languages.We have determined the followingrequirements: We needed concurrency primitivesas actors need to able to run on any processoravailable simultaneously. We chose to use athread per actor. Actors need to communicatewith each other therefore we need thread safedatastructures for communication. We foundZeromq’s czmq19 framework to provide theprimitives we needed we needed and more. It alsoenabled us to build upon its provided actormethods.Every actor runs a reactor pattern20 whichutilizes a kernel level polling mechanism. Thisway an actor can block on multiplecommunication channels. Each actor has adedicated in memory point to pointcommunication channel for control and uses apublication (pub) socket to publish data to otheractors. An actor can subscribe to another actor’s“pub” socket through a subscribe (sub) socket.Using this topology actors can communicate witheach other and can be managed. The followingdiagram illustrates the actor setup.

With this setup actors trigger on events on itssockets. We have added a simple timeoutmechanismwhich enable actors to also operate ontimed triggers. Through this an actor can forexample also use a typical game loopprogramming model used in OpenFrameworksand Processing. We expect this to be welcomedby users coming from those frameworks.The GUI application, which we have dubbedGazebosc21, is a very minimal SDL applicationusing an Immediate Mode UI to represent thegraph of actors. It provides control of the actors,its connections and is able to spawn and destroyactors. It can save the graph of actors to file andload them from a file.We want a visual representation of all actorsusing typical nodal logic. However since we runcompletely concurrently it is not safe for actors todraw a graphical representation by themselves.We use the dedicated control communicationchannel to report its status which we use to draw aGUI. The exact implementation of this ReportAPI is ongoing. For now it reports a stringrepresentation of the actor’s state.Because the Report API used for the graphicalrepresentation is an asynchronouscommunication channel it cannot represent theexact current state of the actor. When a report isreceived, the actor might already be in a nextstate. For example it can be the case that thisspecific actor processes much faster than we canrepresent graphically. This is an inherent featureof concurrent programming and needs to beaccounted for by the user.To enable easy creation of Actors weembedded Python into the prototype. Python hasthe unfortunate limitation of having a GlobalInterpreter Lock which limits concurrentcomputation to sequential limitation. Asperformance is not our primary focus, this is noproblem for our current prototype. We are closely



following Python’s sub-interpreter22 supportwhich would overcome these limitations.The development of the prototype is in itsearly stages. Many things can be said about aboutits design. For example one could questionwhether it is optimal to use a thread per actor andlet the Operating System schedule it. MicrosoftWindows operates on a different IO model anduses a ‘Proactor’ pattern therefore we expectperformance on Windows to be sub-optimal.However our questions are currently focused onwhether we can let novice users operate on thismodel. We will later focus on optimizing itsperformance and platform support.

Initial feedback test
We organized a Freaklab23 in which we haveexposed some users to the initial prototype. Wewere interested in their feedback about theconcurrency challenges, whether they could buildand run the prototype on their computer andwhether they would be able to implement asimple HelloWorld actor or Python actor.We invited people from our network which wecan classify as being ‘developers’ in our user-level classification. We explicitly neededdeveloper level users because of the early stage ofthe prototype. We expect challenges in buildingthe prototype and tracing bugs using debuggerson different platforms.

Results
The Freaklab session was held with 8 peopleattending using OSX and Linux systems. As weexpected mostly technical feedback we list someof the issues we encounteredThe initial hurdle to overcome were buildingissues on some versions of OSX. These hurdlesare important for us to eradicate as these often arediscouraging for new users. Our session was usedto find causes of these issues. We also noticedGIL errors when using Python before version 3.7.We anticipate more GIL challenges once wecreate more actors due to the concurrent nature ofthe prototype. Linux worked out of the box.

We did not test Windows as there were nopeople using Windows. We have also notsucceeded in building the prototype on Windowsdue to the different build environments used bydependencies. This needs to be sought out first.After users were able to run the unit tests andbuild the GUI application we moved on tobuilding custom actors. The easiest approach tobuilding custom actors is using the embeddedPython interpreter. This was picked up by theusers and gave no trouble. The hardest part was inreturning an OSC message from Python.Currently we provide no methods forconstructing or deconstructing OSC messages.This clearly needs addressing to make this moreeasy.Another approach to creating custom Actors isby using C++. The GUI app included a GActorclass which can be inherited. This took quitesome time for users to accomplish and we noticedfrom this exercise that the C++ API needs to besimplified. Users now need to explicitly use thesame name for declaration and instantiating. Thismake sense from a compiler and runtimeperspective but would be easier if this is handledmore automatic. In essence the C++ API shouldwork similar to the Python API which justdictates a name for the handler method inside aclass.Another issue we noticed was the in naming ofour API.We interchangeably use “node”, “actor”,“backend” and “fronted” which is confusing. TheSphactor API uses specific methods to control therunning thread(actor or node) from the mainthread. This is very important to do right, forexample C allows us to run these methods frominside the running threads as well which couldcause errors as this is not thread safe. The APIshould support the user not to do so. It would behelpful if the naming of the API methods help theuser to know from what context it is calling amethod. One suggestion was to use a mentalmodel of “asking” an actor. This would be helpfulin understanding that we are asking from a secondperson perspective an actor to do something.In a later attempt we have tested a scenariousing a Python Actor to play audio trigger by a“Manual Pulse” actor, so that a manual trigger ondifferent buttons would trigger audible sounds.We refer to setups like this as a “stage”. The stage



can be saved to a file. We loaded this saved stagefile onto an other computer running a differentplatform. This worked flawlessly and illustratedhow we want to enable cross-platform support. Inthis scenario we benefit from Python’s crossplatform support. This scenario alsodemonstrated the latency of actor communicationas no audible delay was noticeable. We still needto acquire real performance metrics of the actor’scommunication. This will be done in a lateriteration of development when we focus more onthe performance of our framework.

Conclusion
The design of our prototype has shown someof its potential during the tests we performed. Wehave succeeded in getting the prototype to run onother user’s machines and in getting users toextend the possibilities of the prototype bycreating custom actors. We acquired feedbackfrom users during our Freaklab session which weuse in our next development iteration. Althoughwe do not have any performance metrics yet weare confident to continue development in thedirection we’re heading. As our current focus isnot on performance but rather usability our nextiteration will be in simplified API’s, customActor creation and more general usage exampleActors.If in a later stadium we need to enhanceperformance we have a very good option tominimize file descriptor and thread usage bymerging actors to utilize a thread pool. Thecontrol communication channel will then bereduced to one channel per CPU core. This canreduce context switching overhead and filedescriptors usage. Further optimization can thenalso be accomplished by enabling actors whichoperate on the same thread to just call eachother’s method instead of through their pub-subsockets. From a mental model this should makeno difference as actors still send and receivemessages. How it’s handled in the backendshould be of no concern to the user. For now weleave this open as an exercise for a later moment.

References
1. Wright, Matthew. Open Sound Control 1.0Specification. 2002,http://opensoundcontrol.org/spec-1_0.2. Maeda, John. Creative Code. Thames &Hudson, 2004.3. What Is Max? | Cycling ’74.https://cycling74.com/products/max/.Accessed 29 Jan. 2020.4. Pure Data — Pd Community Site.https://puredata.info/. Accessed 29 Jan.2020.5. Agha, Gul A. Actors: A Model ofConcurrent Computation in DistributedSystems. MIT Press, 1986.6. TROIKATRONIX : ISADORA.https://troikatronix.com/. Accessed 29 Jan.2020.7. Touchdesigner. Derivative,https://derivative.ca/. Accessed 29 Jan.2020.8. Processing. https://processing.org/.Accessed 29 Jan. 2020.9. OpenFrameworks.https://openframeworks.cc/. Accessed 29Jan. 2020.10. Witters, Koen. DeWiTTERS Game Loop –DeWiTTERS.https://dewitters.com/dewitters-gameloop/.Accessed 29 Jan. 2020.11. Mazza, Emanuele. Mosaic. 2018. 2020.GitHub, https://github.com/d3cod3/Mosaic.12. Ossia – Open Software System forInteractive Applications. https://ossia.io/.Accessed 29 Jan. 2020.13. Sutter, Herb. “A Fundamental Turn TowardConcurrency in Software.”Dr. Dobb’s,http://www.drdobbs.com/web-development/a-fundamental-turn-toward-concurrency-in/184405990. Accessed 29Jan. 2020.14. Andrews, Gregory R., and Fred B.Schneider. “Concepts and Notations forConcurrent Programming.” ACMComputing Surveys, vol. 15, no. 1, Jan.1983, pp. 3–43. DOI.org (Crossref),doi:10.1145/356901.356903.15. Loonstra, Arnaud. Concurrency for CreativeCoding. Media Technology MScProgramme - Leiden University, 8 Oct.



2015,https://mediatechnology.leiden.edu/research/theses/concurrency-for-creative-coding.16. Loonstra, Arnaud. Orchestrating ComputerSystems, a Research into a New Protocol.http://z25.org/static/_rd_/zocp_init_plab/index.html. Accessed 29 Jan. 2020.17. Jenkins, Henry. Confronting the Challengesof Participatory Culture: Media Educationfor the 21 St Century. 2006.18. van der Maas, Han. Computational Thinking– ‘Op Een Creatieve Manier ProblemenOplossen. 30 Nov. 2016,https://www.kennisnet.nl/artikel/computational-thinking-op-een-creatieve-manier-problemen-oplossen/.19. CZMQ High-Level C Binding for ØMQ .2011. The ZeroMQ project, 2020. GitHub,https://github.com/zeromq/czmq.20. Schmidt, Douglas C. Patterns forConcurrent and Networked Objects. Wiley,2000. Open WorldCat,http://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781118725177.21. Gazebosc. 2019. HKU Expertise CentreCreative Technology, 2020. GitHub,https://github.com/hku-ect/gazebosc.22. “PEP 554 -- Multiple Interpreters in theStdlib.” Python.Org,https://www.python.org/dev/peps/pep-0554/. Accessed 29 Jan. 2020.23. Loonstra, Arnaud. Freaklabs: Joint Artistsand Developers Technology Design andEvaluation.http://z25.org/static/_rd_/freaklab_plab/index.html. Accessed 29 Jan. 2020.


