
Interactive applications
on HPC systems

Erich Birngruber

(erich.birngruber@gmi.oeaw.ac.at, @ebirn)

Vienna BioCenter

FOSDEM20

mailto:erich.birngruber@gmi.oeaw.ac.at

Interactive applications
on HPC systems

FOSDEM20

.

Erich Birngruber

(erich.birngruber@gmi.oeaw.ac.at, @ebirn)

Vienna BioCenter

mailto:erich.birngruber@gmi.oeaw.ac.at

sh$ not good enough?

❓

Usually we submit batch jobs, maybe interactive jobs if-needs-be;

Is the command line good enough? - not always:

* some tools are GUI only, still need major resources

* Interactive data exploration

* Visualizations / plotting

* Collaboration and sharing

* Classroom and training situations

* Analyses triggered by non-HPC users

I will bring 4 examples of such applications now.

XPRA

XPRA
• https://xpra.org/

• “screen for X11”

• Allows disconnect / re-connect to existing X sessions

• Web interface for X11 rendering (HTML5 canvas)

• For arbitrary GUI applications

• Containerized in SLURM

• Custom middleware for job management

“Screen”: disconnect from sessions and reconnect later (from somewhere else)

Allows session access via SSH, TCP, and Web!!

Actually: we run X11+canvas client

Drawback: arbitrary GUI apps:

* watch out for keyboard shortcuts (close tab, browser, etc)

https://xpra.org/

Launch XPRA job

Request resources and select application

Applications are launched in Singularity containers (no X11 on compute nodes)

XPRA job submitted

Job will be queued and eventually be ready to connect to

XPRA session

XPRA setup

launch job
submit request

connect to xpra client

IT services batch scheduler

middleware

RStudio

RStudio

• https://rstudio.com/

• IDE for R language

• Desktop and Web version (RStudio server)

• Commercial version for advanced features

• RStudio company has become a public benefit company 
https://blog.rstudio.com/2020/01/29/rstudio-pbc

Studio Server: launchers = start mechanism for individual session

Commercial features: launchers for various backends (local, Kubernetes, SLURM)

https://rstudio.com/
https://blog.rstudio.com/2020/01/29/rstudio-pbc

Portal overview

control over multiple sessions

Fully fledged R IDE.

* Interpreter from env modules

* Syntax completion / help

* Launch more jobs from code selection (with different job size than editor session)

RStudio setup

batch schedulerRStudio server

job launcher

session connect session

Galaxy

• https://galaxyproject.org/

• Web based workflow tool

• Tools as building blocks (parameters, input, output)

• Tool definitions in XML

• Multiple instances: dev - testing - production

https://galaxyproject.org/

Design full workflows via GUI

Requires initial input and starts tools accordingly to do the full pipeline of processing

Bioinformatitions create workflows, can be used for analyses by other users

Galaxy setup

develop testing production

batch scheduler

job

Git repo branches

test job

session

GitOps setup:

* Develop: for IT department: deploy, config tests

testing: clone of production, for Tool/Workflow developers

production: for end-users

JupyterHub

• https://jupyter.org/

• Web-Based IDE (standalone vs. hub)

• Notebooks = Code + Outputs

• Interpreters as “Kernels”

Notebook: actually JSON

Notebook: Kernel = Interpreter, 1 Kernel per Notebook

Hub: web-connector to individual notebook servers

Hub: allows multiple sessions

Hub: spawners launch

https://jupyter.org/

* Spawner = implementation for launching IDE (local, docker, Kubernetes, Batch)

* select job size

* Select environment

* I.e. use same Python versions (modules) that are available on the cluster

* maybe run the same code later as patch job

* There are converters for Notebook -> python script

	

Jupiter Lab = extended IDE

* File browser

* Notebooks

* Cells = code snippets, execution unit

* different Kernels

* Various plugins: i.e. viewer for hdf5, FASTA, etc.

* Drawback: no code select -> job like RStudio

JupyterHub setup
batch schedulerJupyterHub

job

connects

proxy

hub

session

api

Browser connects to hub through a proxy

Hub will program proxy to forward users to their notebook servers

No direct connection to system running the notebooks required

Summary
• XPRA 

Special use cases: X11
applications (Fiji) in Containers

• RStudio 
R (from env modules), web-
based IDE

• Galaxy 
pre-configured workflows

• JupyterHub 
Python (per-user kernels),
plugins

Summary:

XPRA: for special use cases, non-web GUI applications

RStudio: based on module environment, execute code snippets as jobs

Galaxy: workflow tool, UI editor, separate development from production

Jupyterhub: Notebooks, Kernels

Others

• OpenOnDemand: interactive/remote desktop portal 
https://openondemand.org/

• Apache Zeppelin: data exploration “notebooks” 
https://zeppelin.apache.org/

• Eclipse Che: cloud-based editor 
https://www.eclipse.org/che/ 

This list is non-exhaustive

OpenOnDemand: GUI applications + also web-based shell access - why!

Zeppelin: Datasource (SQL, …) oriented notebooks

Che: cloud-based IDE dev environment - is this where things are moving?

https://openondemand.org/
https://zeppelin.apache.org/
https://www.eclipse.org/che/

Then this happened

😳

What’s Wrong with Computational Notebooks?
Pain Points, Needs, and Design Opportunities

Souti Chattopadhyay1, Ishita Prasad2, Austin Z. Henley3, Anita Sarma1, Titus Barik2

Oregon State University1, Microsoft2, University of Tennessee-Knoxville3

{chattops, anita.sarma}@oregonstate.edu, {ishita.prasad, titus.barik}@microsoft.com, azh@utk.edu

ABSTRACT
Computational notebooks—such as Azure, Databricks, and
Jupyter—are a popular, interactive paradigm for data scien-
tists to author code, analyze data, and interleave visualiza-
tions, all within a single document. Nevertheless, as data
scientists incorporate more of their activities into notebooks,
they encounter unexpected difficulties, or pain points, that
impact their productivity and disrupt their workflow. Through
a systematic, mixed-methods study using semi-structured in-
terviews (n = 20) and survey (n = 156) with data scientists,
we catalog nine pain points when working with notebooks.
Our findings suggest that data scientists face numerous pain
points throughout the entire workflow—from setting up note-
books to deploying to production—across many notebook
environments. Our data scientists report essential notebook
requirements, such as supporting data exploration and visual-
ization. The results of our study inform and inspire the design
of computational notebooks.

Author Keywords
Computational notebooks; challenges; data science;
interviews; pain points; survey

CCS Concepts
•Human-centered computing ! Interactive systems and

tools; Empirical studies in HCI; •Software and its engi-

neering ! Development frameworks and environments;

INTRODUCTION
Computational notebooks are an interactive paradigm for com-
bining code, data, visualizations, and other artifacts, all within
a single document [21, 36, 32, 30]. This interface, essentially,
is organized as a collection of input and output cells. For exam-
ple, a data scientist might write Python code in an input code
cell, whose result renders a plot in an output cell. Although
these cells are linearly arranged, they can be reorganized or
executed in any order. The code executes in a kernel—the
computational engine behind the notebook.

This interactive paradigm has made notebooks an appealing
choice for data scientists, and this demand has sparked multi-
ple open source and commercial implementations, including

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHI ’20, April 25–30, 2020, Honolulu, HI, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6708-0/20/04 ...$15.00.
http://dx.doi.org/10.1145/3313831.3376729

Azure,1 Databricks,2 Colab,3 Jupyter,4 and nteract.5 While
originally intended for exploring and constructing computa-
tional narratives [29, 31], data scientists are now increasingly
orchestrating more of their activities within this paradigm [33]:
through long-running statistical models, transforming data at
scale, collaborating with others, and executing notebooks di-
rectly in production pipelines. But as data scientists try to do
so, they encounter unexpected difficulties—pain points—from
limitations in affordances and features in the notebooks, which
impact their productivity and disrupt their workflow.

To investigate the pain points and needs of data scientists
who work in computational notebooks, across multiple note-
book environments, we conducted a systematic mixed-method
study using field observations, semi-structured interviews, and
a confirmation survey with data science practitioners. While
prior work has studied specific facets of difficulties in note-
books [24, 17], such as versioning [18, 19] or cleaning unused
code [13, 34], the central contribution of this paper is a taxon-
omy of validated pain points across data scientists’ notebook
activities.

Our findings identify that data scientists face considerable
pain points through the entire analytics workflow—from set-
ting up the notebook to deploying to production—across
many notebook environments. While our participants reported
workarounds, these were ad hoc, required manual interven-
tions, and were prone to errors. Our data scientist report their
key needs are support for deploying notebooks to production
and scheduling time-consuming batch executions as well as
under-the-hood software engineering support for managing
code and history. Our findings further our understanding of
requirements for supporting data scientists’ day-to-day ac-
tivities, and suggest design opportunities for researchers and
toolsmiths to improve computational notebooks and streamline
data science workflows.

STUDY DESIGN
Our investigation consisted of two studies. Study 1, a mix of
complementary field observations and interviews, investigates
the difficulties that data scientists face in their day-to-day
activities. Study 2 confirms our findings from Study 1 through
a survey of 156 data scientists.

1
https://notebooks.azure.com/

2
https://databricks.com/product/

3
https://colab.research.google.com/

4
https://jupyter.org/

5
https://nteract.io/

What is wrong?

20 interviews + 120 surveys

9 Major deficiencies of notebooks

* sharing is “difficult”

* Reproducibility is difficult as it depends on the environment

* Code management:

* Notebook == JSON

* Code + data -> changes on every execution

* Git :(no meaningful diffs

… so as a conclusion: things are changing, different platforms - but with their own problems

References
• XPRA https://xpra.org/

• RStudio https://rstudio.com/

• Jupyterhub https://jupyter.org/hub

• Galaxy https://galaxyproject.org/

• What is wrong with computational notebooks? 
http://web.eecs.utk.edu/~azh/blog/notebookpainpoints.html 
 

https://xpra.org/
https://rstudio.com/
https://galaxyproject.org/
http://web.eecs.utk.edu/~azh/blog/notebookpainpoints.html

