
Immutable deployments: the
new classic way for service

deployment
Adopt the new immutable infrastructure paradigm

using your old toolbox.

 Matteo Valentini
@_Amygos

_Amygos

Warning!

The events depicted in this talk are real. Any
similarity to any technology living or dead is not a

merely coincidental.

The illustrated approach is based on lessons
learned in almost two years of using the
methodology on a production service.

The Problems

_Amygos

The Problems: SnowflakeServer

_Amygos

The Problems: SnowflakeServer

A server that is unique[1]:

● Manual installation
● Manual configuration
● Manual maintenance

It Is your server and you take care of it,

as you do with your pet.

[1]https://martinfowler.com/bliki/SnowflakeServer.html

https://martinfowler.com/bliki/SnowflakeServer.html

_Amygos

The Problems: Configuration Drift

The drift from a well know start state, even if automated configuration tool are
used[2]:

● Automated configuration tools manage a subset of a machine’s state
● Writing and maintaining manifests/recipes/scripts is time consuming

The path of least resistance of services management

Every developer or operator will always follow the simple, less costly and quick
way to fix a production problem. And then he/she will forget about it.

[2]http://kief.com/configuration-drift.html

http://kief.com/configuration-drift.html

_Amygos

The Problems: Unknown Unknowns

“An unknown unknown means that
there is something you need to know,
but there is no way for you to find out
what it is, or even whether there is an
issue.”

John Outsterhout, “A Philosophy of
Software Design”, p. 9

_Amygos

The Problems: Not Deterministic Deployment

The Solution

_Amygos

Immutable Infrastructure

“If you absolutely know a system has been created via automation and never
changed since the moment of creation, most of the problems I describe above
disappear. Need to upgrade? No problem. Build a new, upgraded system and
throw the old one away. New app revision? Same thing. Build a server (or image)
with a new revision and throw away the old ones.”

Chad Fowler, “Trash Your Servers and Burn Your Code: Immutable Infrastructure
and Disposable Components”

http://chadfowler.com/2013/06/23/immutable-deployments.html

http://chadfowler.com/2013/06/23/immutable-deployments.html

_Amygos

Immutable Infrastructure: Deterministic Deployment

_Amygos

Immutable Infrastructure

“Immutable infrastructure make
configuration changes by completely
replacing the servers.Changes are
made by building new server templates,
and then rebuilding relevant servers
using those templates. This increase
predictability, as there little variance
between servers as tested, and servers
in production. It requires sophistication
in server template management.”

Kief Morris, “Infrastructure as Code:
Managing Servers in the Cloud”, p.70

_Amygos

Immutable infrastructure: What We Need?

● An automated provisioning/configuration tool
● An automated image generator tool
● An orchestrator
● A system to keep track of all the changes (we can use git for that)

The Tools

_Amygos

The Tools: Automated Provisioning

Shell scripts

● Almost every developer can
understand it

● Simple and at the same time very
powerful

_Amygos

The Tools: Image Builder

Packer

● JSON file configuration
● Multiple provisioners support:

○ Ansible
○ Puppet
○ Chef
○ Shell scripts
○ ...

● Multiple Builder support:
○ DigitalOcean
○ AWS
○ Google Cloud
○ Azure
○ ….

_Amygos

The Tools: Orchestrator

Terraform

● DSL (HCL)
● Declarative language configuration
● Enable IaC
● Multi cloud support

○ AWS
○ Google Cloud
○ Azure
○ DigitalOcean
○ ...

_Amygos

The Tools: Cloud platform

DigitalOcean

● Not expensive
● Simple
● Have every thing the you need:

○ APIs
○ Compute instances
○ Snapshots
○ Cloud-init
○ Floating IPs
○ Load Balancers

_Amygos

The Tools: Why?

● Container vs VM
○ The vm are a more familiar concepts
○ Not all company want or need to switch to container

● Configuration Management vs shell scripts
○ The learning steps can be too high
○ For some simple tasks a shell script is enough for the work

● Complex orchestrator vs IaC
○ For most of the company a complex orchestrator (like kubernetes) is too much
○ You end up with two problems:

■ Manage the service orchestration
■ Manage the orchestrator

● Full features cloud platform vs Simple cloud platform
○ Usually you use only a subset of functionality offered
○ The practitioners prefer simple e easy interface and ways
○ The management are more inclined to approve the use of a cloud platform were costs are low

and the pricing is clear

_Amygos

The Tools: Why?

“What tools or technologies you use is
irrelevant if the people who must use
them hate use them, or if they don’t
archive the outcomes and enable the
behaviors we care about.”

Nicole Forsgren PhD, Jez Humble,
Gene Kim, “Accelerate: The Science of
Lean Software and DevOps: Building
and Scaling High Performing
Technology Organizations”, p. 68

The Implementation

_Amygos

The application

The simple app example:

● Single Go binary
● Deployed on Github releases
● 1 attached database
● Follow the 12 Factor app principles[3]:

○ Codebase: One codebase tracked in revision control, many deploys
○ Config: Store config in the environment
○ Processes: Execute the app as one or more stateless processes
○ Disposability: Maximize robustness with fast startup and graceful

shutdown

[3]https://12factor.net/

https://12factor.net/

_Amygos

Git Repository Layout

.

├── packer.json
├── provisioning
│ └── files
│ └── app.service
└── terraform
 ├── database.tf
 ├── domains.tf
 ├── droplet.tf
 ├── image.tf
 └── userdata.tf

_Amygos

Service Systemd Unit File

[Unit]

Description=App server

After=network.target cloud-init.service

[Service]

Type=simple

User=root

EnvironmentFile=-/opt/app/conf.env

WorkingDirectory=/opt/app

Environment=GIN_MODE=release

ExecStart=/opt/app/app

[Install]

WantedBy=multi-user.target

_Amygos

Packer Configuration

{

 "variables": {

"url": "https://github.com/Amygos/immutable_deploys",

"version": "v1"

 },

 "builders": [{

"type": "digitalocean",

"image": "centos-7-x64",

"region": "ams3",

"size": "s-1vcpu-1gb",

"ssh_username": "root",

"snapshot_name": "app-{{user `version`}}-{{isotime \"2006/01/02-15:04:05\"}}"

 }],

 "provisioners": [{

 "type": "file",

 "source": "provisioning/files/app.service",

 "destination": "/usr/lib/systemd/system/app.service"},

 {"type": "shell",

 "inline": [

 "mkdir -p /opt/app",

 "curl -L {{ user `url` }}/releases/download/{{user `version`}}/app > /opt/app/app",

 "chmod 0755 /opt/app/app",

 "systemctl daemon-reload",

 "systemctl enable app"]}]

 }

_Amygos

Packer Output

==> digitalocean: Creating temporary ssh key for droplet...

==> digitalocean: Creating droplet...

==> digitalocean: Waiting for droplet to become active...

==> digitalocean: Using ssh communicator to connect: 178.62.207.7

==> digitalocean: Waiting for SSH to become available...

==> digitalocean: Connected to SSH!

==> digitalocean: Uploading provisioning/files/app.service =>

/usr/lib/systemd/system/app.service

==> digitalocean: Provisioning with shell script: /tmp/packer-shell648441204

==> digitalocean: Gracefully shutting down droplet...

==> digitalocean: Creating snapshot: app-v1-2020/01/25-22:07:03

==> digitalocean: Waiting for snapshot to complete...

==> digitalocean: Destroying droplet...

==> digitalocean: Deleting temporary ssh key...

Build 'digitalocean' finished.

==> Builds finished. The artifacts of successful builds are:

--> digitalocean: A snapshot was created: 'app-v1-2020/01/25-22:07:03' (ID: 58285042)

in regions 'ams3'

_Amygos

Droplet Configuration

resource "digitalocean_droplet" "app" {

 image = data.digitalocean_image.app.image

 name = "app"

 region = "ams3"

 size = "s-1vcpu-1gb"

 user_data = data.template_cloudinit_config.app.rendered

 lifecycle {

 create_before_destroy = true

 }

}

data "digitalocean_image" "app" {

 name = "app-v1-2020/01/25-22:07:03"

}

_Amygos

cloud-init User Data

data "template_cloudinit_config" "app" {

 gzip = false

 base64_encode = false

 part {

 content_type = "text/cloud-config"

 content = <<-EOT

 #cloud-config

 write_files:

 - path: /opt/app/conf.env

 content: |

 DB_HOST="${digitalocean_database_cluster.app.host}"

 DB_PORT="${digitalocean_database_cluster.app.port}"

 DB_USER="${digitalocean_database_cluster.app.user}"

 DB_PASSWORD="${digitalocean_database_cluster.app.password}"

 DB_NAME="${digitalocean_database_cluster.app.database}"

 EOT

 }

}

_Amygos

DNS records configuration

resource "digitalocean_domain" "app" {

 name = “example.com”

}

resource "digitalocean_record" "app" {

 domain = digitalocean_domain.app.name

 type = "A"

 name = "app"

 ttl = "60"

 value = digitalocean_floating_ip.app.ip_address

}

resource "digitalocean_floating_ip" "app" {

 droplet_id = digitalocean_droplet.app.id

 region = "ams3"

}

_Amygos

Database Configuration

resource "digitalocean_database_cluster" "app" {

 name = "app"

 engine = "pg"

 version = "11"

 size = "db-s-1vcpu-1gb"

 region = "ams3"

 node_count = 1

}

_Amygos

Immutable Infrastructure Workflow

● Deploy new app version
a. Build new image with packer
b. Add it in the terraform configuration
c. Apply the changes

● Modify the configuration
a. Change or add new configuration to the cloud-init template
b. apply the changes

Conclusions

_Amygos

Conclusions: The Benefits

Lowering the Deployment Pain

● Simple provisioning: you don't have to care about to previous state, every
time is from scratch

● Simple rollback: most of the time is a simple git revert or git restore

Horizontal scalability

The server arent uique anymore so you can easly scale

Reproducibility

All is automatized and tracked, you can easily reproduce a deployment and create
a local environment

_Amygos

The benefits: Immutable Infrastructure Impacts

Immutable
Infrastructure

Source
Version
Control

Infrastructure
as

Code

Automated
Provisioning

_Amygos

Conclusions: Immutability trade-offs

Separate what is immutable from what is mutable, eg.;

Immutable resources

● Application code/binary
● graphical assets
● ...

Mutable resource

● Database
● HTTPS Certificates (yes, they are a mutable resource)
● ...

_Amygos

Conclusions: Further Steps

Centralized Loging System

● Graylog
● ELK
● ...

Centralized Monitoring System

● Prometheus, Grafana

Distribuite Tracing Tool

● Jaeger

Thanks for listening!
Questions?

Matteo Valentini

Developer @ Nethesis (mostly Infrastrutture Developer)

 Amygos

 @_Amygos

 amygos@paranoici.org, matteo.valentini@nethesis.it

